簡易檢索 / 詳目顯示

研究生: 彭凱暘
Peng, Kai-Yang
論文名稱: 創新旋轉磁性編碼器於轉軸即時位移量測之系統開發
Development of Novel Rotary Magnetic Encoder for Spinning Shaft Real-time Displacement Measurements
指導教授: 張禎元
Chang, Jen-Yuan
口試委員: 宋震國
Sung, Cheng-Kuo
曹哲之
Tsao, Che-Chih
徐志豪
Xu, Zhi-Hao
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 旋轉磁性編碼器永久磁鐵主軸偏擺
外文關鍵詞: Rotary magnetic encoder, Permanent magnet, Spindle yaw
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 未來工業加工除了要求高解析度定位外,亦追求低成本之量測系統。以現有之精密儀器來說,常見的定位方式主要分為磁性編碼器與光學編碼器兩種,其感測原理都是使用二進位編碼做為定位來源,區別在於使用之基材與編碼製程的差異。光學編碼器精度較高,但對工作環境要求也相對高且價格偏貴,相比於價格低且工作環境容忍度高之磁性編碼器來說,在工業應用上佔有相當大的優勢。因此本研究希望透過磁性編碼器,開發出一套具有高解析度、符合工業規格且能夠應用於工具機高轉速馬達之位移量測系統,以因應智慧機械化的需求。
    本論文所要研究的新型旋轉磁性編碼器,是於基材表面磁化出數條等間距之磁極,透過不同之充磁方式與磁極排列方式,使編碼器應用層面更加多元。有別於以往的電磁鐵充磁,本研究改以永久磁鐵做為充磁元件;所提出之特殊的磁極編碼方式與所開發之量測系統,能即時判斷主軸偏擺量與位移程度。本文藉由充磁機構、實驗參數設計與分析,提升主軸旋轉時位移訊號的穩定性,並驗證此新型旋轉磁性編碼器應用於工具機之可行性。


    In the existing precision instruments, positioning methods are mainly divided into two types: magnetic encoder and optical encoder. Both types of positioning method utilize binary coding and the only differences are the material substrate and encoding process. Optical encoders have higher precision when compared to that of magnetic encoders. However, it demands higher requirement in working environment and cost. On the other hand, magnetic encoder has the advantage of lower cost and excellent in dirt immunity. Therefore, this research is aimed at development a displacement measurement system with high-resolution that can be used in high-speed spinning shaft in machine tools.
    The proposed rotary magnetic encoder in this work is magnetized with various arrangements of uniform magnetic poles. Through different methods of magnetization and magnetic pole arrangement, it allows magnetic encoders to be more diverse and favorable in different applications. Compared to commonly found magnetization process, the proposed magnetization process uses a permanent magnet as the magnetizing source. Furthermore, with the use of special magnetic pole coding pattern in the development at the measurement system, the shaft’s displacement in both linear and radial directions can be determined. Through this research the feasibility of the proposed new type rotary magnetic encoder is validated.

    摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 VII 表目錄 XII 第1章、 緒論 13 1.1 前言 13 1.2 技術背景與產品現況 14 1.2.1 著磁方式 14 1.2.2 產品現況 16 1.3 文獻回顧 19 1.4 研究方法 34 第2章、 磁阻感測器感測原理與訊號解析 35 2.1 磁阻感測器感測原理 35 2.2 數位磁阻感測器訊號解析 38 第3章、 實驗方法 40 3.1 實驗設計 40 3.1.1 充磁頭設計 40 3.1.2 線性充磁平台設計 43 3.1.3 旋轉充磁平台設計 46 3.1.4 量測平台 64 3.2 量測程式編寫 66 3.2.1 可攜式位移量測系統 66 3.2.2 內藏式位移量測系統 69 第4章、 實驗驗證 76 4.1 可攜式位移量測系統之磁性編碼器精度驗證 76 4.2 內藏式位移量測系統之上機驗證 85 第5章、 結論與未來工作 93 5.1 結論 93 5.2 未來展望 94 參考文獻 96

    [1] T. I. C. 東洋磁気工業株式会社, LTD. Magnetic enthalpy. Available: http://www.magnix.com/product/yoke_coil.htm
    [2] 內湖磁材有限公司. 電容式充磁機. Available: http://www.nhmagnet.com.tw/chinese/supplier_factory.html
    [3] M. T. C. 麥思科技有限公司. 非接觸式電容式位移計. Available: http://www.memstec.com.tw/productDetail.php?PNo=398
    [4] M. T. C. 麥思科技有限公司. 非接觸式雷射位移計. Available: http://www.memstec.com.tw/productDetail.php?PNo=393
    [5] O. CORPORATION. Eddy Current Array Tutorial Basic Concepts. Available: https://www.olympus-ims.com/en/ndt-tutorials/eca-tutorial/what-is-eca/basic/
    [6] K. Miyashita, T. Takahashi, and M. J. I. T. o. M. Yamanaka, "Features of a magnetic rotary encoder," vol. 23, no. 5, pp. 2182-2184, 1987.
    [7] Y. Kikuchi et al., "Considerations of output voltage waveform on magnetic linear encoder for artificial heart using linear pulse motor," vol. 81, no. 1-3, pp. 309-312, 2000.
    [8] M. Ikeda and H. Kaku, "MR Sensor for Magnetic Encoder," IEEE Translation Journal on Magnetics in Japan, vol. 7, no. 9, pp. 705-713, 1992.
    [9] R. Hunt, "A magnetoresistive readout transducer," IEEE Transactions on Magnetics, vol. 7, no. 1, pp. 150-154, 1971.
    [10] 邱國基 and 黃得瑞, "多極磁性元件之設計與製作在高精密定位系統之應用," 2005.
    [11] T. Nakata and N. J. I. T. o. M. Takahashi, "Numerical analysis of transient magnetic field in a capacitor-discharge impulse magnetizer," vol. 22, no. 5, pp. 526-528, 1986.
    [12] N. J. J. o. M. P. T. Takahashi, "3D analysis of magnetization distribution magnetized by capacitor-discharge impulse magnetizer," vol. 108, no. 2, pp. 241-245, 2001.
    [13] H. Okuno, M. Ishikawa, and Y. J. I. T. J. o. M. i. J. Sakaki, "Properties of SmCo film for magnetic rotary encoder," vol. 2, no. 12, pp. 1146-1148, 1987.
    [14] Y.-J. Luo, E.-T. Hwang, and S.-M. Huang, "Multi-pole magnetization of high resolution magnetic encoder," in Proceedings of Electrical/Electronics Insulation Conference, 1993, pp. 237-242: IEEE.
    [15] Y. Kikuchi, F. Nakamura, H. Wakiwaka, and H. J. I. T. o. M. Yamada, "Index phase output characteristics of magnetic rotary encoder using a magneto-resistive element," vol. 33, no. 5, pp. 3370-3372, 1997.
    [16] Y. Kikuchi, F. Nakamura, H. Wakiwaka, H. Yamada, and J. Yamamoto, "Consideration of magnetization and detection on magnetic rotary encoder using finite element method," IEEE Transactions on Magnetics, vol. 33, no. 2, pp. 2159-2162, 1997.
    [17] Z. Zhang, F. Ni, Y. Dong, C. Guo, M. Jin, and H. Liu, "A Novel Absolute Magnetic Rotary Sensor," IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4408-4419, 2015.
    [18] S. Wang, J. Jin, T. Li, and G. Liu, "High-Accuracy Magnetic Rotary Encoder," Berlin, Heidelberg, 2012, pp. 74-82: Springer Berlin Heidelberg.
    [19] S.-M. Yang and C.-L. J. I. S. J. Huang, "A hall sensor-based three-dimensional displacement measurement system for miniature magnetically levitated rotor," vol. 9, no. 12, pp. 1872-1878, 2009.
    [20] 林政逸, "發展一兩列錯位式編碼之線性精密絶對位置量測系統," 國立清華大學, 2016.
    [21] P. L. J. A. o. Heydemann, "Determination and correction of quadrature fringe measurement errors in interferometers," vol. 20, no. 19, pp. 3382-3384, 1981.
    [22] 史碩五, "應用於轉軸軸向位移即時量測之新型磁性編碼器開發," 國立清華大學, 2017.
    [23] M. Podhraški and J. J. S. Trontelj, "A differential monolithically integrated inductive linear displacement measurement microsystem," vol. 16, no. 3, p. 384, 2016.
    [24] K.-C. Fan, F. Cheng, and Y. J. Chen, "Nanopositioning control on a commercial linear stage by software error correction," Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, vol. 4, pp. 1-9, 03/01 2006.
    [25] 維基百科. 增量型旋轉編碼器. Available: https://zh.wikipedia.org/wiki/%E6%97%8B%E8%BD%89%E7%B7%A8%E7%A2%BC%E5%99%A8
    [26] H.-C. Wang, G.-H. Yu, J.-L. Cao, and L.-J. Wang, "Electroless plating Co–P films for high performance magnetic rotary encoders," Sensors and Actuators A: Physical, vol. 165, no. 2, pp. 216-220, 2011/02/01/ 2011.
    [27] M. Berz, B. Erdélyi, and K. Makino, "Fringe field effects in small rings of large acceptance," Physical Review Special Topics - Accelerators and Beams, vol. 3, no. 12, p. 124001, 12/06/ 2000.
    [28] Micro-Epsilon. Available: https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/
    [29] N. I. Corporation, "myRIO Student Embedded Device," 2019.

    [30] 北京科能廣告有限公司深圳分公司. (2000~2019). CRC碼的FPGA實現之一CRC的原理. Available: https://www.mianbaoban.cn/blog/609735-347882.html

    QR CODE