研究生: |
謝思義 Hsieh, Szu-I |
---|---|
論文名稱: |
嵌入式低溫複晶矽非揮發性記憶體之研究 Investigation of Embedded Low-Temperature Polysilicon Non-Volatile Memory |
指導教授: |
金雅琴
King, Ya-Chin 林崇榮 Lin, Chrong-Jung |
口試委員: |
金雅琴
林泓均 簡昭欣 蘇彬 葉永輝 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | 低溫複晶矽 、薄膜電晶體 、非揮發性記憶體 、LTPS 、TFT 、NVM |
外文關鍵詞: | Low Temperature Poly-Silicon, Thin Film Transistor, Non-Volatile Memory |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了要符合具備輕、薄、高可靠度以及高解析度主動式液晶顯示器之需求,我們使用循序性側向雷射結晶技術以及氧化矽-氮化矽-氧化矽閘極介電層堆疊結構,在玻璃基板上,製作低溫複晶矽薄膜電晶體,結果顯示其元件性能及可靠度特性都較傳統單層氧化層的薄膜電晶體佳。多層閘極結構薄膜電晶體可以應用在整合周邊驅動電路於低溫複晶矽薄膜電晶體液晶顯示面板上。
本論文,首度提出具有電場增強的尖端結構之嵌入式金屬-氧化矽-氮化矽-氧化矽-複晶矽(MONOS) 非揮發性記憶體,此記憶體元件的製造完全相容於低溫複晶矽製程技術,也不需要額外的製程步驟。藉由適當的光罩設計以及雷射結晶對準的製程技術,可以精確地控制複晶矽晶界在薄膜電晶體通道中的位置。嵌入式非揮發性記憶體不僅可以整合於低溫複晶矽顯示器的每一個畫素內,用以降低功率消耗,而且也可以做為可程式邏輯陣列的應用,擴展可攜式電子裝置額外的附加功能。
MONOS 記憶體可藉由通道熱電子注入以及能帶對能帶穿隧引發熱電洞注入來完成寫入與抹除的操作。經由多次的寫入/抹除循環操作後,記憶體元件顯示出具有良好的耐久性與資料保存能力以及很好的抗寫入/讀取干擾的能力。
此外,MONOS 非揮發性記憶體可以排列組合成NOR 型及NAND型記憶體元件陣列以提供嵌入式可程式邏輯陣列在系統整合面板上一個高度可行的解決方案。研究結果顯示,這些記憶體元件陣列可在低電壓操作下,具有良好的重複寫入/抹除之可靠度及資料保存之能力。
To meet the requirements of active matrix liquid crystal display (AMLCD) with a compact, highly reliable, and high resolution, low-temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) using sequential lateral solidify (SLS) crystallization technology on a glass substrate are proposed and demonstrated. LTPS-TFTs with oxide–nitride–oxide (ONO) stacked gate structure revealed superior device performance and device reliability characteristics than conventional SiO2 TFTs. This multi stacked layer gate structure capable of sustaining high-voltage operations can greatly enhance the feasibility of implementing LTPS TFTs embedded peripheral in AMLCDs panels.
An embedded MONOS-type memory device with a field-enhancing tip structure with 1-T per cell realized using SLS-LTPS technology is demonstrated for the first time. The memory device fabrication is fully compatible with conventional LTPS processing and the position of Si protrusions can be well-controlled by the SLS alignment technique. Without additional processing steps, this memory cell can be implemented simply by a typical LTPS technology. The embedded NVM can not only be integrated into each pixel to reduce the power consumption of LCD panels, but also act as programmable logic arrays to extend the functionality on portable electronic devices.
Program and erase operations of these MONOS TFTs can be achieved by channel hot electron injection and band-to-band tunneling induced hot hole injection, respectively. These memory cells exhibit fairly good cycling endurance and data retention characteristics, as well as good immunity to program/read disturbance.
The proposed poly-Si TFT MONOS nonvolatile memory could be arranged in a NOR-type array and/or NAND-type array to provide a highly feasible solution for embedded programmable logics arrays on panel systems. Experimental results reveal that these memory arrays can be operated under low-voltage with good reliability in cycling stability as well as data retention capability.
Chapter 1
[1.1] M. Matsuo, T. Hashizume, S. Inoue, M. Miyasaka, S. Takenaka, I. Yudasaka, and “Full-color VGA poly-Si TFT-LCDs with completely integrated drivers”, in SID Symp. Dig., vol. XXV, pp. 87, 1994
[1.2] S. Inue, M. Matsuo, K. Kitawada, S. Takenaka, S. Higashi, T. Ozawa, Y. Matsueda, T. Nakazawa, and H. Oshima, “425 oC Poly-Si TFT technology and its applications to large-size LCDs and integrated digital data drivers”, in Proc. IDRC, pp. 339, 1995
[1.3] H. Sakamoto, N. Makita, M. Hijikigawa, M. Osame, Y. Tanada, and S. Yamazaki, “2.6 inch HDTV panel using CG silicon,” in SID Symp. Dig., vol. XXXI, pp. 1190, 2000
[1.4] K. Yoneda, R. Yokoyama, and T. Yamada, “Future application potential of low-temperature p-Si TFT LCD displays”, in SID Symp. Dig., vol. XXXII, pp. 1242, 2001
[1.5] K. Kanzaki and M. Sakamoto, “Direction of low-temperature p-Si technology”, in SID Symp. Dig., vol. XXXII, pp. 242, 2001
[1.6] T. Nishibe, “Low-temperature poly-Si TFT by excimer laser annealing”, Mat. Res. Soc. Symp. Proc., vol. 685E, pp. D6.1, 2001
[1.7] T. Matsuo and T. Muramatsu, in SID Symp. Dig., vol. XXXV, pp. 856, 2004
[1.8] Po-Hao Tsai, Hung-Tse Chen, and Chi-Lin Chen, “Low Threshold Voltage Polysilicon TFTs with Dual-layer SiNx/SiO2 Gate Dielectric”, in Proc. IDW, pp. 399, 2004
[1.9] Robert S. Sposili and James S. Im, “Sequential lateral solidification of thin silicon films on SiO2”, Appl. Phys. Lett., vol. 69, pp. 2864, 1996
[1.10] H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai, and H. Nagata, “Low Power Consumption TFT-LCD with Dynamic Memory Embedded in Pixels”, in SID Symp. Dig., pp. 280, 2001
[1.11] H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, and H. Sato, “A 2.15 inch QCIF Reflective Color TFT-LCD with Didital Memory on Glass (DMOG)”, in SID Symp. Dig., pp. 268, 2001
[1.12] M. Senda, Y. Tsutsui, R. Yokoyama, K. Yoneda, S. Matsumoto, and A. Sasaki, “Ultra-Low-Power Polysilicon AMLCD with Full Integration ”, in SID Symp. Dig., pp. 790, 2002
Chapter 2
[2.1] H. Oshima and S. Morozumi, “Feature trends for TFT integrated circuits on glass substrates”, in IEDM Tech. Dig., pp. 157, 1989
[2.2] Y. Nakajima, Y. Teranishi, Y. Kida and Y. Maki, “Ultra-Low-Power LTPS TFT-LCD Technology Using a Multi-Bit Pixel Memory Circuit”, in SID Dig., pp. 1185, 2006
[2.3] A. Abrial, J. Bouvier, M. Renaudin, P. Senn and P. Vivet, “A New Contactless Smart Card IC Using an On-Chip Antenna and an Asynchronous Microcontroller”, IEEE J. Solid-State Circuits, vol.36, pp.1101, 2001
[2.4] A. J. Walker, S. Nallamothu, En.-H. Chen, M. Mahajani, S. B. Herner, M. Clark, J. M. Cleeves, S. V. Dunton, V. L. Eckert, J. Gu, S. Hu, J. Knall, M. Konevecki, C. Petti, S. Radigan, U. Raghuram, J. Vienna and M. A. Vyvoda, “3D TFT-SONOS memory cell for ultra-high density file storage applications”, in VLSI Symp. Tech. Dig., pp. 29, 2003
[2.5] H. Yin, W. Xianyu, A. Tikhonovsky and Y. S. Park, “Scalable 3-D Fin-Like Poly-Si TFT and Its Nonvolatile Memory Application”, IEEE Trans. Electron Devices, vol.55, pp. 578, 2008
[2.6] A. J Walker, “Sub-50nm DG-TFT-SONOS- the ideal Flash memory for monolithic 3-D”, in IEDM, pp. 1, 2008
[2.7] E. K. Lai, H. T. Lue, Y. H. Hsiao, J. Y. Hsieh, C. P. Lu, S. Y. Wang, L. W. Yang, T. Yang, K. C. Chen, J. Gong, K. Y. Hsieh, R. Liu, and C. Y. Lu, “A Multi-Layer Stackable Thin-Film Transistor (TFT) NAND-Type Flash Memory”, in IEDM, pp. 1, 2006
[2.8] E. K. Lai, H. T. Lue, Y. H. Hsiao, J. Y. Hsieh, S. C. Lee, C. P. Lu, S. Y. Wang, L. W. Yang, K. C. Chen, J. Gong, K. Y. Hsieh, Ku J., Liu R., and C. Y. Lu, “A Highly Stackable Thin-Film Transistor (TFT) NAND-Type Flash Memory”, in VLSI Symp. Tech. Dig., pp. 46, 2006
[2.9] Robert S.C. Wang, Rick S.J. Shen and Charles C.H. Hsu, “Neobit □ High Reliable Logic Non-Volatile Memory (NVM)”, in Proc. IPFA, pp. 111, 2004
[2.10] H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai, and H. Nagata, “Low Power Consumption TFT-LCD with Dynamic Memory Embedded in Pixels”, in SID Dig., pp. 280, 2001
[2.11] H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, and H. Sato, “A 2.15 inch QCIF Reflective Color TFT-LCD with Digital Memory on Glass (DMOG)”, in SID Dig., pp. 268, 2001
[2.12] M. Senda, Y. Tsutsui, R. Yokoyama, K. Yoneda, S. Matsumoto, and A. Sasaki, “Ultra-Low-Power Polysilicon AMLCD with Full Integration ”, in SID Dig., pp. 790, 2002
[2.13] Y. Nakajima, Y. Teranishi, Y. Kida and Y. Maki, “Ultra-low-power LTPS TFT-LCD technology using a multi-bit pixel memory circuit”, J. SID, pp. 1071, 2006
[2.14] M. Cao, T. Zhao, K. C. Saraswat and J. D. Plummer, “A Simple EEPROM Cell Using Twin Polysilicon Thin Film Transistors”, IEEE Electron Device Lett., vol. 15, pp. 304, 1994
[2.15] N. D. Young, G. Harkin, R. M. Bumn, D. J. McCulloch, and I. D. French, “The Fabrication and Characterization of EEPROM Arrays on Glass Using a Low-Temperature Poly-Si TFT Process”, IEEE Electron Device Lett., vol. 43, pp. 1930, 1996
[2.16] N. I. Lee, J. W. Lee, H. S. Kim and C. H. Han, “High-Performance EEPROM Using N- and P-Channel Polysilicon Thin-Film Transistors with Electron Cyclotron Resonance N2O-Plasma Oxide” IEEE Electron Device Lett., vol. 20, pp. 15, 1999
[2.17] J. H. Oh, H. J. Chung, N. I. Lee and C. H. Han, “A High-Endurance Low-Temperature Polysilicon Thin-Film transistor EEPROM Cell”, IEEE Electron Device Lett., vol. 21, pp. 304, 2000
[2.18] Y. C. Wu, P. W. Su, C. W. Chang and M. F. Hung, “Novel Twin Poly-Si Transistors EEPROM With Trigate Nanowire Structure”, IEEE Electron Device Lett., vol. 29, pp. 1226, 2008
[2.19] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell and R. E. Oleksiak, “The variable threshold transistor, a new electrically alterable, non-destructive read-only devices”, in IEDM Tech. Dig., 1967
[2.20] P. C. Chen, “Threshold-alterable si-gate MOS devices”, IEEE Trans. Electron Devices, ED-24 , pp. 584, 1977
[2.21] P. Y. Kuo, T. S. Chao, J. S. Huang and T. F Lei, “Poly-Si Thin-Film Transistor Nonvolatile Memory Using Ge Nanocrystals as a Charge Trapping Layer Deposited by the Low-Pressure Chemical Vapor Deposition”, IEEE Electron Device Lett., vol. 30, pp. 234, 2009
[2.22] S. Jung, and J. Yi, “Nanocrystalline-Silicon Thin-Film Nonvolatile Memory Devices for Display Applications”, IEEE Electron Device Lett., vol. 31, pp. 981, 2010
[2.23] Y. H. Lin, C. H. Chien, T. H. Chou, T. S. Chao and T. F. Lei, “Low-Temperature Polycrystalline Silicon Thin-Film Flash Memory With Hafnium Silicate”, IEEE Trans. Electron Devices, vol. 54, pp. 531, 2007
[2.24] L. J. Chen, Y. C. Wu, J. H. Chiang, M. F. Hung, C. W. Chang and P. W. Su, “Comprehensive Study of Pi-Gate Nanowires Poly-Si TFT Nonvolatile Memory With an HfO2 Charge Trapping Layer”, IEEE Trans. Nanotechnology, vol. 10, pp. 260, 2011
[2.25] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, Sze, S. M., C. Y. Chang and C. H. Lien, “A Novel Nanowire Channel Poly-Si TFT Functioning as Transistor and Nonvolatile SONOS Memory“, IEEE Electron Device Lett., vol. 28, pp. 809, 2007
[2.26] J. Fu, Y. Jiang, N. Singh, C. X. Zhu, G. Q. Lo and D. L. Kwong, “Polycrystalline Si Nanowire SONOS Nonvolatile Memory Cell Fabricated on a Gate-All-Around (GAA) Channel Architecture“, IEEE Electron Device Lett., vol. 30, pp. 246, 2009
Chapter 3
[3.1] K. Makihira and T. Asno, “Single-grain thin-film transistor fabricated on poly-Si films prepared by metal imprint technology“, in Proc. AMLCD, pp. 33, 2000
[3.2] H. J. Kim and J. S. Im, “New excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si films for thin-films transistor “, Appl. Phys. Lett., vol. 68, pp. 1513, 1996
[3.3] R. S. Sposili and J. S. Im, “Sequential lateral solidification of thin silicon films on SiO2“, Appl. Phys. Lett., vol. 69, pp. 2864, 1996
[3.4] M. Matsumura, “Excimer-laser-produced two-dimensional arrays of large Si-grains“, SPIE Proc., vol. 4295, pp. 1, 2001
[3.5] A. Hara, F. Takeuchi, M. Takei, K. Suga, K. Yoshino, M. Chida, Y. Sano, and N. Sasaki, “High-Performance Polycrystalline Silicon Thin Film Transistors on Non-Alkali Glass Produced Using Continuous Wave Laser Lateral Crystallization”, Jpn. J. Appl. Phys. Vol. 41, pp. L311, 2002
[3.6] M. Hatano, T. Shiba and M. Ohkura, “Selectively Enlarging Laser Crystallization Technology for High and Uniform Performance Poly-Si TFTs”, in SID Dig., vol. 33, pp. 158, 2002
[3.7] R. Ishihara, M. He, V. Rana, Y. Hiroshima, S. Inoue, T. Shimoda, J. W. Metselaar and C. I. Beenakker, “Electrical property of coincidence site lattice grain boundary in location-controlled Si island by excimer-laser crystallization”, Thin Solid Films, vol. 487, pp. 97, 2005
[3.8] T. Mizuki, J. S. Matsuda, Y. Nakamura, J. Takagi and T. Yoshida, “Large Domains of Continuous Grain Silicon on Glass Substrate for High- Performance TFTs”, IEEE Trans. Electron Devices, vol.51, pp. 204, 2004
[3.9] J. S. Im and R. S. Sposili, “Crystalline Si films for integrated active-matrix liquid crystal displays“, MRS Bulletin, vol. 21, pp. 39, 1996
[3.10] J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. J. Song and H. S. Cho, “Controlled superlateral growth of Si films for microstructural manipulation and optimization“, Phys. Stat. Sol. A, vol. 166, pp. 603, 1998
[3.11] Y. H. Jung, J. M. Yoon, M. S. Yang, W. K. Park, H. S. Soh, H. S. Cho, A. B. Limanov, and J. S. Im, “Low-temperature polycrystalline Si TFTs fabricated with directionally crystallized Si film“, Mat. Res. Soc. Symp. Proc., vol. 621, pp. 8.3.1, 2000
[3.12] S. D. Brotherton, M. A. Crowder, A. B. Limanov, B. Turk and J. S. Im, “Characterization of poly-Si TFTs in directionally solidified SLS Si “, in Proc. ICDR, pp. 387, 2001
[3.13] Y. -C. Chen, H. -T. Chen, C. -M. Lai, C. -L. Chen, J. -X. Lin, J. -F. Chang and Y. -R. Liu, “Investigation of Low roughness Polycrystalline-Silicon and Thin Gate Insulator Thin Film Transistor”, in AM-LCD Dig., pp. 227, 2004
[3.14] Y. -C. Chen, Y. -R. Liu, J. -X. Lin, C. -L. Chen, J. -F. Chang, Y. -F. Wu, Y. -H. Yeh, C. -Y. Sheu and S.-W. Chang, “Fabrication of Extremely Low Roughness Polycrystalline Silicon and Its Correlation to Device Performance”, in SID Dig., pp. 216, 2003
[3.15] T. Fujimura, A. Takami, A. Ishida, S. Kawamura, and T. Nishibe, “Reliability improvement of TFTs with thin gate insulator films by smoothing polycrystalline silicon surface roughness”, in AM-LCD Dig., pp. 175, 2001
[3.16] K. C. Moon, S. Yim, P. Choi, H. K. Min, and H. K. Kim, in AM-LCD Dig., pp. 157, 2000
[3.17] S. Matsuo and M. Kiuchi, “Low-temperature chemical-vapor-deposition method utilizing an electron cyclotron resonance plasma”, Jpn. J. Appl. Phys. Vol. 22, pp. L210, 1983
[3.18] K. -M. Chang, W. -C. Yang, and C. -P. Tsai, “Performance and Reliability of Low-Temperature Polysilicon TFT with a Novel Stack Gate Dielectric and Stack Optimization Using PECVD Nitrous Oxide Plasma“, IEEE Trans. Electron Devices, vol.51, pp. 63, 2004
[3.19] K. -M. Chang, W. -C. Yang and C. -P. Tsai, “Electrical Characteristics of Low Temperature Polysilicon TFT with a Novel TEOS/Oxynitride Stack Gate Dielectric“, IEEE Electron Device Lett., vol.24, pp.512, 2003
[3.20] M. P. O’Sullivan, N. D. Young, C. Glasse and R. W. Wilks, “Low Threshold Voltage Poly-Si TFTs Formed Using Ta2O5 Gate Dielectric“, in Proc. IDW, pp. 335, 2003
[3.21] Po-Hao Tsai, Hung-Tse Chen, and Chi-Lin Chen, “Low Threshold Voltage Polysilicon TFTs with Dual-layer SiNx/SiO2 Gate Dielectric”, in Proc. IDW, pp. 399, 2004
[3.22] C. A. Dimitriadis, M. Kimura, M. Miyasaka, S. Inoue, F. V. Farmakis, J. Brini and G. Kamarinos, “Effect of grain boundaries on hot-carrier induced degradation in large grain polysilicon thin-film transistors ”, Solid-State Electronics, pp. 2045, 2000
Chapter 4
[4.1] Robert S. Sposili and James S. Im, “Sequential lateral solidification of thin silicon films on SiO2”, Appl. Phys. Lett., vol. 69, pp. 2864, 1996
[4.2] C. A. Dimitriadis, M. Kimura, M. Miyasaka, S. Inoue, F. V. Farmakis, J. Brini and G. Kamarinos, “Effect of grain boundaries on hot-carrier induced degradation in large grain polysilicon thin-film transistors ”, Solid-State Electronics, pp. 2045, 2000
Chapter 5
[5.1] Y. M. Ha, “P-type Technology for Large Size Low Temperature Poly-Si TFT-LCDs,” in SID Symp. Dig., pp. 1116, 2000
[5.2] Yong-Min Ha, Soon-Kwang Hong, Hoon Jeong, Jae-Deok Park, Byeong-Koo Kim, and Woo-Yeol Kim, “P-type Low-Power Low-Temperature TFT-LCDs”, in SID Symp. Dig., pp. 1080, 2004
[5.3] Woo-Jin Nam, Hye-Jin Lee, Hee-Sun Shin, Sang-Geun Park, and Min-Koo Han, “Low-Voltage Driven P-Type Polycrystalline Silicon Thin-Film Transistor Integrated Gate Driver Circuits for Low-Cost Chip-on-Glass Panel”, Jpn. J. Appl. Phys., vol. 45, pp. 4389, 2006
[5.4] Yong-In Park et al., “LTPS PMOS Four-Mask Process for AMLCDs”, in SID Symp. Dig., pp. 341, 2005
[5.5] R. S. Sposili and J. S. Im, “Sequential lateral solidification of thin silicon films on SiO2,” Appl. Phys. Lett., vol. 69, no. 19, pp. 2864–2866, 1996