研究生: |
瓦竺 Poliraju Kalluru |
---|---|
論文名稱: |
Nanomaterial-Mediated Photodynamic Therapy for the Destruction of Tumors Nanomaterial-Mediated Photodynamic Therapy for the Destruction of Tumors |
指導教授: |
黃國柱
Hwang, Kuo Chu |
口試委員: |
袁俊傑
Yuan, Chiun-Jye 吳淑褓 Wu, Shu-pao 江啟勳 Chiang, Chi-Shiun 宋信文 Sung, Hsing-Wen |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 178 |
中文關鍵詞: | 奈米材料 、光動力治療 、腫瘤 、癌症 |
外文關鍵詞: | Nanomaterials, Photodynamic Therapy, Tumors, Cancer |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來光療法已經被發現能夠用在治療多種的癌症上面,比起其他的治療,它主要的優點如:非侵入性治療、高穿深度、低副作用以及低成本等。光動力治療(PDT)是一種光療法中的重要方法,主要是使用有機感光劑(PS)吸光後將光子能量轉移到組織中的氧氣(3O2),產生單重態的氧氣(1O2),進而毒殺癌細胞。大部分臨床上的PDT只能使用在治療表皮的腫瘤,因為大部分的有機PS吸收UV光或是可見光,而這兩波段的光對組織的穿深度低,加上有機PS通常水溶性較差,導致較差的吸光能力。此外,有機PS也容易被光分解(Photobleaching)或被酵素分解,因此PDT在臨床上還有許多的問題必須去克服。然而,奈米材料的優點為PDT帶來了許多契機。在合成具有高吸光係數、近紅外光的吸收、高光學穩定性、高表面積、磁性和螢光等等性質的奈米材料是不易的,在本論文中,將探討幾種不含有機PS的奈米材料在PDT的應用,以及其使用近紅外光驅動的皮膚癌和肺癌的治療。
第一章中,我們合成了摻雜鑭系金屬矽中孔洞奈米材料(EuGd@MCF),並將抗癌藥物Doxorubicin(DOX)修飾在表面,此材料具有磁振造影、螢光顯影及紅外光驅動單重態氧氣生成等性質,能夠同時使用化療及 PDT來對癌細胞/腫瘤進行毒殺。第二章中,我們發表PEGylated氧化鎢奈米線(PEG-W18O49NWs)作為PDT光敏材料,應用在單重態氧對癌細胞/腫瘤細胞的毒殺; 我們使用低功率的雷射(980nm, 200mW/cm2)對HeLa細胞進行光療實驗,此結果顯示細胞凋亡PDT的貢獻遠大於光熱治療(PTT),直接的證據包含:單重態氧形成、活性氧物種(ROS)及Heat shock protein(HSP70)表現。在in vivo實驗,在低劑量的雷射治療下,結果顯示,PDT毒殺B16F0黑色素瘤遠大於PTT。
第三章中,我們合成上轉換奈米粒子(UCNPs),由於UCNPs有上轉換螢光散射,在低強度的雷射(70~360 mW/cm2)下能夠產生單重態氧並可以作為PDT的PS。將UCNPs結合靜默基因(silencing gene),superoxide dismutase (SOD1),能夠提升材料對肺癌細胞毒殺的效率提升。最後在第四章中,我們使用PEGylated 氧化石墨烯修飾上葉酸(GO-PEG-folate)作為PDT的試劑,使用980nm雷射照射下毒殺黑色素瘤細胞。綜觀本論文介紹多種奈米材料,探討在不使用有機的感光劑的情況下,PDT毒殺癌細胞的效果。綜觀,我們發現了奈米材料光動力治療領域(NmPDT),且能夠取代使用有機感光劑的PDT以及奈米材料光熱治療(NmPTT)在臨床上癌症治療。
In the recent clinical scenario, phototherapies are widely explored for the treatment of various types of cancers. The major advantages of phototherapies include non-invasiveness, superior tissue penetration, reduced side effects and cost-effective treatment strategies than other modalities. Photodynamic therapy (PDT) is one of the very important phototherapeutic approaches which involve the use of an organic photosensitizer (PS) molecule to absorb and transfer the photon energy to the normal tissue oxygen (3O2) to generate cytotoxic singlet oxygen (1O2), which is able to kill cancer cells. Most of the clinical PDT treatments are restricted to surface tumors, because most of organic PS can only be photochemically excited by either UV or visible light, which have very short tissue penetration depths. The organic PS molecules are usually insoluble in water, possesses very poor light absorbing capabilities, and also prone to severe photobleaching and enzymatic degradation. Therefore, it leaves a grand challenge to develop a novel and exciting treatment modality which can overcome the drawbacks of conventional PDT. In this regard, the advent of nanotechnology brings a lot of hope to the clinical biomedicine. Fabrication of nanomaterials with extra-ordinary light absorbing capabilities extending the visible to near infra-red regions, excellent photostabilities, high surface area, magnetic and fluorescent properties are actually very rare and limited. In this thesis, we have explored such variety of nanomaterials which can mediate the photodynamic therapeutic effects without any co-presence of organic photosensitizers and capable of activation by NIR light for the treatments of skin and lung cancers.
In the first chapter, we have developed a theranostic nanoconstruct based on lanthanide doped mesoporous silica nanoparticles (EuGd@MCF) loaded with an anticancer drug, doxorubicin (DOX) can facilitate simultaneous magnetic resonance (MR) / fluorescence imaging and can also sensitize formation of singlet oxygen (1O2) upon near-infra red (NIR) light irradiation to exert the combination of chemo-photodynamic therapeutic (PDT) effects to kill the cancer cells/solid tumors. In the second chapter, we have presented an unprecedented phenomenon of photosensitization of singlet oxygen and its photodynamic therapeutic (PDT) effects mediated by PEGylated tungsten oxide nanowires (PEG-W18O49 NWs) on destruction of cancer cells/malignant tumors. In the PEG-W18O49 NWs internalized HeLa cells, we show that at low laser intensity (980 nm, 200 mW/cm2), cancer cells die from PDT-initiated apoptosis with a very minor contribution coming from the photothermal therapy (PTT) effect-initiated apoptosis. Direct evidences such as, singlet oxygen, reactive oxygen species (ROS) formation and heat shock protein (HSP 70) expression were also provided to show the existence of PDT and PTT pathways. In the in vivo experiments, the PEG-W18O49 NWs-mediated PDT effects are far more effective in destructing B16F0 melanoma tumors than the corresponding PEG-W18O49 NWs -mediated PTT effects at low doses of NIR light irradiation.
In the third chapter, we have showed that upconversion nanoparticles (UCNPs) can sensitize formation of singlet oxygen (1O2) and exert in vivo photodynamic therapeutic effects upon NIR (980 nm) light excitation at very low laser doses (70~360 mW/cm2), in addition to the upconversion fluorescence emission. In combination with the silencing gene, superoxide dismutase (SOD1), the upconversion nanoparticles-mediated combination therapeutic modality can effectively kill lung tumors. Further, in the chapter four, we have extended the similar study to PEGylated nano graphene oxide conjugated with the folate (GO-PEG-folate) to develop as a nanomaterial-mediated PDT reagent for the destruction of melanoma tumors upon activation by 980 nm NIR light. Overall, the current thesis provides an overview of how the intrinsic nanomaterials can be used as photodynamic therapeutic reagents in killing cancer cells without the use of any organic photosensitizers. Taken altogether, we have discovered the field of nanomaterial-mediated photodynamic therapy (NmPDT), as an exciting alternative to organic PS-mediated PDT and nanomaterial-mediated photothermal therapy (NmPTT) for the clinical cancer treatments.
Chapter-1
1. D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, I. C. Kwon, Chemical Society Reviews 2012, 41, 2656.
2. I. Wistuba, J. G. Gelovani, J. J. Jacoby, S. E. Davis, R. S. Herbst, Nat Rev Clin Oncol 2011, 8, 135.
3. D. Hughes, Nat Rev Genet 2003, 4, 432.
4. O. Taratula, C. Schumann, M. A. Naleway, A. J. Pang, K. J. Chon, O. Taratula, Molecular Pharmaceutics 2013, 10, 3946.
5. J. H. Ryu, H. Koo, I.-C. Sun, S. H. Yuk, K. Choi, K. Kim, I. C. Kwon, Advanced Drug Delivery Reviews 2012, 64, 1447.
6. F. Jia, X. Liu, L. Li, S. Mallapragada, B. Narasimhan, Q. Wang, Journal of Controlled Release 2013, 172, 1020.
7. Zintchenko, A. S. Susha, M. Concia, J. Feldmann, E. Wagner, A. L. Rogach, M. Ogris, Mol Ther 2009, 17, 1849.
8. X. Huang, M. A. El-Sayed, Journal of Advanced Research 2010, 1, 13.
9. J.-L. Li, B. Tang, B. Yuan, L. Sun, X.-G. Wang, Biomaterials 2013, 34, 9519.
10. X. Wu, M. Wu, J. X. Zhao, Nanomedicine: Nanotechnology, Biology and Medicine 2014, 10, 297.
11. T. Lei, R. Manchanda, A. Fernandez-Fernandez, Y.-C. Huang, D. Wright, A. J. McGoron, RSC Advances 2014, 4, 17959.
12. C. Argyo, V. Weiss, C. Bräuchle, T. Bein, Chemistry of Materials 2013, 26, 435.
13. S.-H. Wu, Y.-S. Lin, Y. Hung, Y.-H. Chou, Y.-H. Hsu, C. Chang, C.-Y. Mou, ChemBioChem 2008, 9, 53.
14. Q. Zhang, X. Wang, P.-Z. Li, K. T. Nguyen, X.-J. Wang, Z. Luo, H. Zhang, N. S. Tan, Y. Zhao, Advanced Functional Materials 2014, 24, 2450.
15. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, P. N. Prasad, Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 279.
16. E.-B. Cho, D. O. Volkov, I. Sokolov, Advanced Functional Materials 2011, 21, 3129.
17. F. Ye, S. Laurent, A. Fornara, L. Astolfi, J. Qin, A. Roch, A. Martini, M. S. Toprak, R. N. Muller, M. Muhammed, Contrast Media & Molecular Imaging 2012, 7, 460.
18. F. Sonvico, S. Mornet, S. Vasseur, C. Dubernet, D. Jaillard, J. Degrouard, J. Hoebeke, E. Duguet, P. Colombo, P. Couvreur, Bioconjugate Chemistry 2005, 16, 1181.
19. D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat Rev Cancer 2003, 3, 380.
20. A.P. Castano, P. Mroz, M. R. Hamblin, Nat Rev Cancer 2006, 6, 535.
21. J. Tu, T. Wang, W. Shi, G. Wu, X. Tian, Y. Wang, D. Ge, L. Ren, Biomaterials 2012, 33, 7903.
22. J. Lee, J. Park, K. Singha, W. J. Kim, Chemical Communications 2013, 49, 1545.
23. S. A. Mackowiak, A. Schmidt, V. Weiss, C. Argyo, C. von Schirnding, T. Bein, C. Bräuchle, Nano Letters 2013, 13, 2576.
24. G. Charron, T. Stuchinskaya, D. R. Edwards, D. A. Russell, T. Nann, The Journal of Physical Chemistry C 2012, 116, 9334.
25. Z. M. Markovic, B. Z. Ristic, K. M. Arsikin, D. G. Klisic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepic, T. K. Kravic-Stevovic, S. P. Jovanovic, M. M. Milenkovic, D. D. Milivojevic, V. Z. Bumbasirevic, M. D. Dramicanin, V. S. Trajkovic, Biomaterials 2012, 33, 7084.
26. L. Xiao, L. Gu, S. B. Howell, M. J. Sailor, ACS Nano 2011, 5, 3651.
27. J. Wang, J. Leng, H. Yang, G. Sha, C. Zhang, Langmuir 2013, 29, 9051.
28. K. Gohre, G. C. Miller, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1985, 81, 793.
29. S. Agnello, M. Cannas, L. Vaccaro, G. Vaccaro, F. M. Gelardi, M. Leone, V. Militello, R. Boscaino, The Journal of Physical Chemistry C 2011, 115, 12831.
30. R. Vankayala, Y.-K. Huang, P. Kalluru, C.-S. Chiang, K. C. Hwang, Small 2014, 10, 1612.
31. R. Vankayala, C.-C. Lin, P. Kalluru, C.-S. Chiang, K. C. Hwang, Biomaterials 2014, 35, 5527.
32. P. Vijayaraghavan, C.-H. Liu, R. Vankayala, C.-S. Chiang, K. C. Hwang, Advanced Materials 2014, 26, 6689.
33. P. Vijayaraghavan, R. Vankayala, C.-S. Chiang, H.W. Sung, K. C. Hwang, Biomaterials 2015, 62, 13.
34. P. Kalluru, R. Vankayala, C.-S. Chiang, K. C. Hwang, Angewandte Chemie International Edition 2013, 52, 12332.
35. C.-Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Y. Lin, Journal of the American Chemical Society 2003, 125, 4451.
36. C.L. Huo, J. O. Yang, H. M. Yang, Sci Rep 2014, 4, 3682.
37. C.-T. Yang, K.-H. Chuang, MedChemComm 2012, 3, 552.
38. L. Faucher, A.-A. Guay-Bégin, J. Lagueux, M.-F. Côté, É. Petitclerc, M.-A. Fortin, Contrast Media & Molecular Imaging 2011, 6, 209.
39. W. Chen, A. G. Joly, C. M. Kowalchuk, J.-O. Malm, Y. Huang, J.-O. Bovin, The Journal of Physical Chemistry B 2002, 106, 7034.
40. M. Vallet-Regi, A. Rámila, R. P. del Real, J. Pérez-Pariente, Chemistry of Materials 2000, 13, 308.
41. S. Mura, J. Nicolas, P. Couvreur, Nat Mater 2013, 12, 991.
42. X. Chen, X. Cheng, A. H. Soeriyadi, S. M. Sagnella, X. Lu, J. A. Scott, S. B. Lowe, M. Kavallaris, J. J. Gooding, Biomaterials Science 2014, 2, 121.
43. S. Kim, M. Fujitsuka, T. Majima, The Journal of Physical Chemistry B 2013, 117, 13985.
44. American National Standards Institute. American National Standard for safe use of lasers. ANSI Z136.1-2007, Orlando (Fla): Laser Institute of America, 2000.
45. Y. Li, T.-y. Lin, Y. Luo, Q. Liu, W. Xiao, W. Guo, D. Lac, H. Zhang, C. Feng, S. Wachsmann-Hogiu, J. H. Walton, S. R. Cherry, D. J. Rowland, D. Kukis, C. Pan, K. S. Lam, Nat Commun 2014, 5.
46. Lee H, Ahn C-H, Park TG. Macromolecular Bioscience 2009, 9, 336.
47. Wang L, et al. Journal of the American Chemical Society 2015,137, 1947.
48. Davies MJ. Biochemical and Biophysical Research Communications 2003, 305, 761.
49. Gracanin M, Hawkins CL, Pattison DI, Davies MJ. Free Radical Biology and Medicine 2009, 47, 92.
50. Wainwright M, Mohr H, Walker WH. Journal of Photochemistry and Photobiology B: Biology 2007, 86, 45.
51. Xiao D, Jia HZ, Zhang J, Liu CW, Zhuo RX and Zhang XZ. Small 2014, 10, 591.
Chapter-2
1. Wang S, et al. Advanced Materials 2013, 25, 3055.
2. Akhavan O, Ghaderi E. Small 2013, 9, 3593.
3. Huang X, et al. Nat Nano 2011, 6, 28.
4. Zha Z, Zhang S, Deng Z, Li Y, Li C, Dai Z. Chemical Communications 2013, 49, 3455.
5. Zhou F, Resasco DE, Chen WR, Xing D, Ou Z, Wu B. Journal of Biomedical Optics 2009, 14, 021009.
6. Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC. Chemical Society Reviews 2012, 41, 2656.
7. Tian Q, et al. Journal of the American Chemical Society 2013, 135, 8571.
8. Chen Z, et al. Advanced Materials 2013, 25, 2095.
9. Agarwal A, Mackey MA, El-Sayed MA, Bellamkonda RV. ACS Nano 2011, 5, 4919.
10. Hessel CM, et al. Nano Letters 2011, 11, 2560.
11. Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z. Advanced Materials 2012, 24, 5586.
12. Jang B, Park J-Y, Tung C-H, Kim I-H, Choi Y. ACS Nano 2011, 5, 1086.
13. You J, et al. Cancer Research 2012, 72, 4777.
14. Guo C, et al. Nanoscale 2013, 5, 6469.
15. Manthiram K, Alivisatos AP. Journal of the American Chemical Society 2012, 134, 3995.
16. Chen Z, et al. Advanced Materials 2013, 25, 2095-2100.
17. Vankayala R, Sagadevan A, Vijayaraghavan P, Kuo C-L, Hwang KC. Angewandte Chemie International Edition 2011, 50, 10640.
18. Pasparakis G. Small 2013, 9, 4130.
19. Vankayala R, Kuo CL, Sagadevan A, Chen P-H, Chiang C-S, Hwang KC. Journal of Materials Chemistry B, 2013, 1, 4379.
20. Smith AM, Mancini MC, Nie S. Nat Nano 2009, 4, 710.
21. P. Kl_n, J. Wirz, Wiley-Blackwell, Oxford, 2009, p. 40.
22. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Journal of the American Chemical Society 2006, 128, 2115.
23. Hu K-W, et al. Journal of the American Chemical Society 2009, 131, 14186.
24. American National Standards Institute. Orlando (Fla): Laser Institute of America; 2000.
25. Kuo W-S, et al. Biomaterials 2012, 33, 3270.
26. Gollmer A, et al. Photochemistry and Photobiology 2011, 87, 671.
27. Wainwright M, Mohr H, Walker WH. Journal of Photochemistry and Photobiology B: Biology 2007, 86, 45.
28. Xu Y, Chen D, Jiao X, Xue K. The Journal of Physical Chemistry C 2007, 111, 16284.
29. Liu X, Atwater M, Wang J, Huo Q. Colloids and Surfaces B: Biointerfaces 2007, 58, 3.
30. Burke A, et al. Proceedings of the National Academy of Sciences 2009, 106, 12897.
31. Fisher JW, et al. Cancer Research 2010, 70, 9855.
32. Li C-Y, Lee J-S, Ko Y-G, Kim J-I, Seo J-S. Journal of Biological Chemistry 2000, 275, 25665.
33. Habash RW, Bansal R, Krewski D, Alhafid HT. Crit Rev Biomed Eng 2006, 34, 459.
Chapter-3
1. M. M. Gottesman, T. Fojo, S. E. Bates, Nat Rev Cancer 2002, 2, 48.
2. C. F. Higgins, Nature 2007, 446, 749.
3. G. Szakacs, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, M. M. Gottesman, Nat Rev Drug Discov 2006, 5, 219.
4. C. Holohan, S. Van Schaeybroeck, D. B. Longley, P. G. Johnston, Nat Rev Cancer 2013, 13, 714.
5. G. V. Scagliotti, S. Novello, G. Selvaggi, Annals of Oncology 1999, 10, S83.
6. G. Bertolini, L. Roz, P. Perego, M. Tortoreto, E. Fontanella, L. Gatti, G. Pratesi, A. Fabbri, F. Andriani, S. Tinelli, E. Roz, R. Caserini, S. Lo Vullo, T. Camerini, L. Mariani, D. Delia, E. Calabrò, U. Pastorino, G. Sozzi, Proceedings of the National Academy of Sciences 2009, 106, 16281.
7. X. Zhu, Y. Xu, L. M. Solis, W. Tao, L. Wang, C. Behrens, X. Xu, L. Zhao, D. Liu, J. Wu, N. Zhang, I. I. Wistuba, O. C. Farokhzad, B. R. Zetter, J. Shi, Proceedings of the National Academy of Sciences 2015, 112, 7779.
8. Y. Qian, M. Qiu, Q. Wu, Y. Tian, Y. Zhang, N. Gu, S. Li, L. Xu, R. Yin, Sci Rep 2014, 4, 7490.
9. H. Zhao, F. Yang, W. Shen, Y. Wang, X. Li, J. You, Q. Zhou, Thoracic Cancer 2015, 6, 133.
10. D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat Rev Cancer 2003, 3, 380.
11. A. P. Castano, P. Mroz, M. R. Hamblin, Nat Rev Cancer 2006, 6, 535.
12. N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, Y. Zhang, Nat Med 2012, 18, 1580.
13. C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, S. Andersson-Engels, ACS Nano 2012, 6, 4788.
14. X. Liu, I. Que, X. Kong, Y. Zhang, T. Langping, Y. Chang, T. Wang, A. Chan, C. Lowic, H. Zhang, Nanoscale 2015.
15. C. Wang, L. Cheng, Y. Liu, X. Wang, X. Ma, Z. Deng, Y. Li, Z. Liu, Adv Func Mater 2013, 23, 3077.
16. S. Cui, D. Yin, Y. Chen, Y. Di, H. Chen, Y. Ma, S. Achilefu, Y. Gu, ACS Nano 2013, 7, 676.
17. R. Vankayala, Y.-K. Huang, P. Kalluru, C.-S. Chiang, K. C. Hwang, Small 2014, 10, 1612.
18. R. Vankayala, C.-C. Lin, P. Kalluru, C.-S. Chiang, K. C. Hwang, Biomaterials 2014, 35, 5527.
19. P. Vijayaraghavan, C.-H. Liu, R. Vankayala, C.-S. Chiang, K. C. Hwang, Adv Mater 2014, 26, 6689.
20. P. Vijayaraghavan, R. Vankayala, C.-S. Chiang, H.-W. Sung, K. C. Hwang, Biomaterials 2015, 62, 13.
21. P. Kalluru, R. Vankayala, C.-S. Chiang, K. C. Hwang, Angewandte Chemie Int Ed 2013, 52, 12332.
22. Q. Liu, W. Feng, T. Yang, T. Yi, F. Li, Nat. Protocols 2013, 8, 2033.
23. I. H. El-Sayed, X. Huang, M. A. El-Sayed, Nano Lett 2005, 5, 829.
24. X. Hun, Z. Zhang, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009, 74, 410.
25. S. Han, R. Deng, X. Xie, X. Liu, Angewandte Chemie Int Ed 2014, 53, 11702.
26. G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, G. Han, ACS Nano 2012, 6, 8280.
27. W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen, Nat Photon 2012, 6, 560.
28. X. Liu, M. Atwater, J. Wang, Q. Huo, Colloids and Surfaces B: Biointerfaces 2007, 58, 3.
29. R. Vankayala, C.-L. Kuo, A. Sagadevan, P.-H. Chen, C.-S. Chiang, K. C. Hwang, J Mater Chem B 2013, 1, 4379.
30. T. Yokota, M. Miyagishi, T. Hino, R. Matsumura, T. Andrea, M. Urushitani, R. V. Rao, R. Takahashi, D. E. Bredesen, K. Taira, H. Mizusawa, Biochem & Biophys Res Comm 2004, 314, 283.
31. C. Raoul, T. Abbas-Terki, J.-C. Bensadoun, S. Guillot, G. Haase, J. Szulc, C. E. Henderson, P. Aebischer, Nat Med 2005, 11, 423.
32. Y. I. Park, H. M. Kim, J. H. Kim, K. C. Moon, B. Yoo, K. T. Lee, N. Lee, Y. Choi, W. Park, D. Ling, K. Na, W. K. Moon, S. H. Choi, H. S. Park, S.- Y. Yoon, Y. D. Suh, S. H. Lee, T. Hyeon, Adv Mater 2012, 24, 5755.
33. T. Wei, C. Chen, J. Liu, C. Liu, P. Posocco, X. Liu, Q. Cheng, S. Huo, Z. Liang, M. Fermeglia, S. Pricl, X.-J. Liang, P. Rocchi, L. Peng, Proceedings of the National Academy of Sciences 2015, 112, 2978.
34. Y. Guo, M. Chu, S. Tan, S. Zhao, H. Liu, B. O. Otieno, X. Yang, C. Xu, Z. Zhang, Mol Pharm 2014, 11, 59.
35. Y. Yuan, L. Wang, W. Du, Z. Ding, J. Zhang, T. Han, L. An, H. Zhang, G. Liang, Angewandte Chemie Int Ed 2015, 54, 9700.
36. W. Fan, B. Shen, W. Bu, X. Zheng, Q. He, Z. Cui, K. Zhao, S. Zhang, J. Shi, Chem Sci 2015, 6, 1747.
37. C. Shi, D. Guo, K. Xiao, X. Wang, L. Wang, J. Luo, Nat Commun 2015, 6.
38. X. Yang, A. K. lyer, A. Singh, E. Choy, F. J. Hornicek, M. M. Amiji, Z. Duan, Sci Rep 2015, 5, 8509.
39. J. Conde, N. Oliva, N. Artzi, Proceedings of the National Academy of Sciences 2015, 112, E1278.
40. S1. H. Du, R.C.A Fuh, J.Li, L.A.Corkan, J.S. Lindsey, Photochemistry and Photobiology 1998, 68, 141.
41. S2. T. Wei, C. Chen, J. Liu, C. Liu, P. Posocco, X. Liu, Q. Cheng, S. Huo, Z. Liang, M. Fermeglia, S. Pricl, X.-J. Liang, P. Rocchi, L. Peng, Proceedings of the National Academy of Sciences 2015, 112, 2978.
42. Y. Guo, M. Chu, S. Tan, S. Zhao, H. Liu, B. O. Otieno, X. Yang, C. Xu, Z. Zhang, Molecular Pharmaceutics 2014, 11, 59.
43. Y. Yuan, L. Wang, W. Du, Z. Ding, J. Zhang, T. Han, L. An, H. Zhang, G. Liang, Angewandte Chemie International Edition 2015, 54, 9700.
44. W. Fan, B. Shen, W. Bu, X. Zheng, Q. He, Z. Cui, K. Zhao, S. Zhang, J. Shi, Chemical Science 2015, 6, 1747.
45. C. Shi, D. Guo, K. Xiao, X. Wang, L. Wang, J. Luo, Nat Commun 2015, 6.
46. X. Yang, A. K. lyer, A. Singh, E. Choy, F. J. Hornicek, M. M. Amiji, Z. Duan, Scientific Reports 2015, 5, 8509.
47. J. Conde, N. Oliva, N. Artzi, Proceedings of the National Academy of Sciences 2015, 112, E1278.
Chapter-4
1. Jemal A, Center MM, DeSantis C, Ward EM. Cancer Epidemiology Biomarkers & Prevention 2010, 19, 1893.
2. Dolmans DEJGJ, Fukumura D, Jain RK. Nat Rev Cancer, 2003, 3, 380.
3. Huang Z, Xu H, Meyers AD, Musani AI, Wang L, Tagg R, et al. Technology in Cancer Research & Treatment 2008, 7, 309.
4. Lucky SS, Soo KC, Zhang Y. Chemical Reviews 2015, 115, 1990.
5. Samia ACS, Chen X, Burda C. Journal of the American Chemical Society 2003, 125, 15736.
6. Konovalova TA, Lawrence J, Kispert LD. Journal of Photochemistry and Photobiology A: Chemistry 2004, 162, 1.
7. Prat F, Marti C, Nonell S, Zhang X, Foote CS, Moreno RG, et al. Physical Chemistry Chemical Physics 2001, 3, 1638.
8. Vankayala R, Huang Y-K, Kalluru P, Chiang C-S, Hwang KC. Small 2014, 10, 1612.
9. Vankayala R, Lin C-C, Kalluru P, Chiang C-S, Hwang KC. Biomaterials 2014, 35, 5527.
10. Vijayaraghavan P, Liu C-H, Vankayala R, Chiang C-S, Hwang KC. Advanced Materials 2014, 26, 6689.
11. Vijayaraghavan P, Vankayala R, Chiang C-S, Sung H-W, Hwang KC. Biomaterials 2015, 62, 13.
12. Kalluru P, Vankayala R, Chiang C-S, Hwang KC. Angewandte Chemie International Edition 2013, 52, 12332.
13. Wang S, Riedinger A, Li H, Fu C, Liu H, Li L, et al. ACS Nano 2015, 9, 1788.
14. Gao L, Liu R, Gao F, Wang Y, Jiang X, Gao X. ACS Nano. 2014;8:7260-71.
15. Taylor AB, Siddiquee AM, Chon JWM. ACS Nano 2014, 8, 12071.
16. Horiguchi Y, Honda K, Kato Y, Nakashima N, Niidome Y. Langmuir 2008, 24, 12026.
17. Huang X, El-Sayed MA. Journal of Advanced Research 2010, 1, 13.
18. Mombeshora ET, Nyamori VO. International Journal of Energy Research 2015, 39, 1955.
19. Smith BR, GhosnEliver Eid B, Rallapalli H, Prescher JA, Larson T, Herzenberg LA, et al. Nat Nanotech 2014, 9, 481.
20. Kim H, Namgung R, Singha K, Oh I-K, Kim WJ. Bioconjugate Chemistry 2011, 22, 2558.
21. Feng L, Zhang S, Liu Z. Nanoscale 2011, 3, 1252.
22. Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, et al. Journal of the American Chemical Society 2011, 133, 6825.
23. Su S, Wang J, Wei J, Martinez-Zaguilan R, Qiu J, Wang S. New Journal of Chemistry 2015, 39, 5743.
24. Li J-L, Hou X-L, Bao H-C, Sun L, Tang B, Wang J-F, et al. Journal of Biomedical Materials Research Part A 2014, 102, 2181.
25. Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, et al. Proceedings of the National Academy of Sciences 2009, 106, 12897.
26. American National Standards Institute. Orlando (Fla): Laser Institute of America, 2000.
27. Kam NWS, O'Connell M, Wisdom JA, Dai H. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 11600.
28. Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z. Nano Letters 2010, 10, 3318.
29. Su S, Wang J, Wei J, Martinez-Zaguilan R, Qiu J, Wang S. New Journal of Chemistry 2015, 39, 5743.
30. Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. Journal of Materials Chemistry 2012, 22, 13773.
31. Akhavan O, Ghaderi E, Emamy H. Journal of Materials Chemistry 2012, 22, 20626.
32. Murakami T, Nakatsuji H, Inada M, Matoba Y, Umeyama T, Tsujimoto M, et al. Journal of the American Chemical Society 2012, 134, 17862.
33. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, et al. Nat Commun 2014, 5, 4596.
34. Markovic ZM, Ristic BZ, Arsikin KM, Klisic DG, Harhaji-Trajkovic LM, Todorovic-Markovic BM, et al. Biomaterials 2012, 33, 7084.
35. Hummers WS, Offeman RE. Journal of the American Chemical Society 1958, 80, 1339.
36. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. ACS Nano 2010, 4, 4806.
37. Vankayala R, Kuo C-L, Sagadevan A, Chen P-H, Chiang C-S, Hwang KC. Journal of Materials Chemistry B 2013, 1, 4379.
38. Li J-L, Bao H-C, Hou X-L, Sun L, Wang X-G, Gu M. Angewandte Chemie International Edition 2012, 51, 1830.
39. Pramanik A, Chavva SR, Fan Z, Sinha SS, Nellore BPV, Ray PC. The Journal of Physical Chemistry Letters 2014, 5, 2150.
40. Singh SK. RSC Advances 2014, 4, 58674.
41. Habash RWY, Bansal R, Krewski D, Alhafid HT. Thermal Therapy, Part 1: An Introduction to Thermal Therapy 2006, 34, 459.
42. Kelemen LE. International Journal of Cancer 2006, 119, 243.
43. D. Magde, G.E. Rojas, P.G. Seybold, Photochem. Photobiol 1999, 70, 737.
44. X. Liu, B. Li, F. Fu, K. Xu, R. Zou, Q. Wang, B. Zhang, Z. Chen, J. Hu, Dalton Trans 2014, 43, 11709.
45. M. Wainright, H. Mohr, W.H. Walker, J. Photochem Photobiol 2007, 86, 45.