研究生: |
林瑋叡 Lin, Wei-Ruei. |
---|---|
論文名稱: |
應用於桌上型掃描式電子顯微鏡之背向散射電子偵檢器研究與製作 Fabrication and Characterization of Backscattered Electron Detector for Desktop Scanning Electron Microscopy |
指導教授: |
陳福榮
Chen, Fu-Rong |
口試委員: |
曾繁根
Tseng, Fan-Gang 蘇紘儀 Su, Hung-I 莊昀儒 Chuang, Yun-Ju 殷廣鈐 Yin, Gung-Chian |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 背向散射電子偵檢器 、掃描式電子顯微鏡 、桌上型掃描式電子顯微鏡 |
外文關鍵詞: | Backscattered Electron Detector, Scanning Electron Microscopy, Desktop Scanning Electron Microscopy |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計的多片環形背向散射電子偵檢器,只需收集背向散射電子,即可顯示試片的原子序對比以及表面形貌對比。相較於典型的多片扇形背向散射電子偵檢器,具有更好的性能表現。該偵檢器主要是置於掃描式電子顯微鏡中,當電子束掃描於樣品時會產生背向散射電子,可藉由偵檢器收集電子並產生訊號。
此外,為了製作高敏感度及高收集效率之背向散射電子偵檢器,本研究利用側向空乏的結構增加表面之敏感度,而使用網狀鋁線提升收集效率。藉由這些方式來提升過去背向散射電子偵檢器的不足之處。
現今的研究多使用低能量電子束,以避免對樣品造成傷害,所產生的背向散射電子能量也相對較低。側向空乏的方式能使空乏區沿伸至偵檢器之表面,藉此可提高低能量之敏感度。利用網狀的鋁線增加電極與工作區域的接觸面積並降低串聯電阻,使工作區受背向散射電子撞擊所產生的電子-電洞對更易經由電極導出,以提升收集效率。
完成背向散射電子偵檢器之後,會量測I-V曲線及暗電流等基本電性。最後將製作的改良版背向散射電子偵檢器做上機測試,並與自製的典型多片環型背向散射電子偵檢器做比較,可以發現改良過的背向散射電子偵檢器在電荷收集效率以及原子序敏感度上確實有所提升。
The multi-annular backscattered electron detector (BSED) proposed in this thesis has been developed so that collecting BSEs is already suitable for the display of Z-contrast as well as surface topography. Compared with the traditional multi-fan shaped BSED, the BSED proposed in this thesis can provide better performance. The detector is set in the Scanning Electron Microscope and it can collect the backscattered electrons and produce the signals during operation.
Besides, this research using the lateral P-N junctions to enhance the sensitivity of the detector and using the Al grids to improve the collecting efficiency for fabricating a high sensitivity and high collecting efficiency backscattered electron detector.
Nowadays, many researches use low energy electron beam to scan the samples to reduce the radiation damage to the samples. The structure of the lateral P-N junctions can make the depletion region extend to the surface of the active areas and increasing the sensitivity of the detector for low energy detection. The Al grids can increase the areas of the Al electrodes which contact on the active areas. This structure can reduce the series resistance. Therefore, the electron-hole pairs produced from the active areas can be collected by the Al electrodes more easily and improve the collecting efficiency of the detector.
After fabricating the BSED, the I-V curve and the dark current of the detector are measured to ensure its basic electric properties. The test results show that the new BSED has better collecting efficiency and atomic number sensitivity than the homemade multi-annular BSED.
1. Reimer, L., Scanning electron microscopy: physics of image formation and microanalysis. 1998: Springer Verlag.
2. 陳力俊, 材料電子顯微鏡學. 1994: 國家實驗研究院儀器科技研究中心.
3. Goldstein, J., et al., Scanning electron microscopy and X-ray microanalysis. 2003: Springer Us.
4. Bongeler, R., et al., Electron-specimen interactions in low voltage scanning electron microscopy. 1993. Vol.15, pp. 1-1.
5. Heinrich, K., In Proceedings of the 4th International Conference on X-ray Optics and Microanalysis. 1966: pp. 159.5.
6. Hunger, H.J. and L. Kuchler, Measurements of the electron backscattering coefficient for quantitative EPMA in the energy range of 4 to 40 keV. Physica status solidi (a), 1979. Vol.56(1), pp. 45-48.
7. Reimer, L., Image formation in low-voltage scanning electron microscopy. Tutorial texts in optical engineering., Bellingham, Wash.: SPIE Optical Engineering Press. Xii, 1993.
8. Spieler, H., Semiconductor detector systems. 2005: Oxford University Press, USA.
9. Everhart, T.E. and R.F.M. Thornley, Wide-band detector for micro-microampere low-energy electron currents. Journal of Science Instruments, 1960. Vol.37, pp. 246-248.
10. Robinson, V., The construction and uses of an efficient backscattered electron detector for scanning electron microscopy. Journal of Physics E: Scientific Instruments, 1974. Vol.7, pp. 650.
11. Erlandsen, S., et al., High-resolution backscatter electron imaging of colloidal gold in LVSEM. Journal of Microscopy, 2003. Vol. 211(3), pp. 212-218.
12. Knoll, G.F., Radiation detection and measurement. Vol. 2. 1989: Wiley New York.
13. Newbury, D., H. Yakowitz, and R. Myklebust, Monte Carlo calculations of magnetic contrast from cubic materials in the scanning electron microscope. Applied Physics Letters, 1973. Vol. 23(8), pp. 488-490.
14. Reimer, L. and Riepenhausen, M., Detector strategy for secondary and backscattered electrons using multiple detector systems, Scanning, 1985. Vol. 7, pp. 221-238.
15. Munden, A. and D. Walker, A silicon detector for the Stereoscan scanning electron microscope. Journal of Physics E: Scientific Instruments, 1973. Vol.6, pp. 916.
16. Stephen, J., et al., Applications of a semiconductor backscattered electron detector in a scanning electron microscope. Journal of Physics E: Scientific Instruments, 1975. Vol. 8, pp. 607.
17. Gedcke, D., J. Ayers, and P. DeNee, A solid state backscattered electron detector capable of operating at TV scan rates. Scan Electron Microsc, 1978. Vol.1, pp. 581-594.
18. Kaczmarek, D., Backscattered electrons topographic mode problems in the SEM. Scanning Microscopy, 1998. Vol.12(1), pp. 161-169.
19. Kaczmarek, D., Backscattered electrons topographic mode problems in the scanning electron microscope. Optica Applicata, 2001. Vol.31(3), pp. 649-658.
20. Fritz, G., et al., Lateral pn-junctions as a novel electron detector for microcolumn systems. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1999. Vol. 17, pp. 2836.
21. Wei-Kuo Huang, Yu-Chang Liu and Yue-Ming Hsin, A high speed and high responsivity photodiode in standard CMOS technology. IEEE Photonics Technology Letters. 2007. Vol. 19(4), pp. 197 – 199.
22. Meier, G., et al., Characterization and application of a low profile metal-semiconductor-metal detector for low energy backscattered electrons. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1996. Vol. 14(6), pp. 3821-3824.
23. Fan Ji, Mikko Juntunen, et al, Electrical crosstalk in front illuminated photodiode array with different guard ring designs for medical CT applications. Nuclear Instruments and Methods in Physics Research A, 2009. Pp. 150-153.
24. L.K. Nanver, T. L. M. Scholtes, et al., Pure-Boron Chemical-Vapor-Deposited Layers: a New Material for Silicon Device Processing. 2010. 18th International Conference on Advanced Thermal Processing of Semiconductors (RTP)
25. Agata Sakic, Student Member, et al, High-Efficiency Silicon Photodiode Detector for Sub-keV Electron Microscopy. IEEE Transactions on Electron Devices, 2012. Vol. 59, No. 10, pp. 2707-2714.
26. S. Kalthom Tasirin, P. Susthitha Menon, et al, High performance silicon lateral PIN photodiode. IOP Conf. Series: Earth and Environmental Science. 16 (2013) 012032.
27. E. Valtonen, T. Eronen, et al, Fabrication of a thin silicon detector with excellent thickness uniformity. Nuclear Inst. and Methods in Physics Research: A. 2016. Vol. 810, pp. 27-31
28. K.R.C. Mok, L. Qi, et al, Self-aligned two-layer metallization with low series resistance for litho-less contacting of large-area photodiodes. Solid-State Electronics. 2015. Vol.111, pp. 210–217.
29. Sze, S. and K. Ng, Physics of semiconductor devices. 2007: Wiley-Blackwell.
30. Stephen, J., et al., Applications of a semiconductor backscattered electron detector in a scanning electron microscope. Journal of Physics E: Scientific Instruments, 1975. Vol.8, pp. 607.
31. Meier, G.D., et al., Characterization and application of a low profile metal semiconductor metal detector for low energy backscattered electrons. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1996. Vol. 14(6), pp. 3821-3824.
32. Leamy, H.J., Charge collection scanning electron microscopy. Journal of Applied Physics, 1982. Vol. 53(6), pp. R51-R80.
33. Sze, S., Semiconductor devices, physics and technology. 1985, Wiley.
34. Cohen, M.L. and J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors. 2nd ed. 1988, Berlin: Springer-Verlag.
35. Kang-Decc Suh, Soon-Won Hong, et al, An Analysis for the potential of floating guard rings. Solid-State electronics. 1990. Vol. 33, No. 9, pp. 1125-l 129.
36. A. V. Gostev, S. A. Ditsman, V. V. Zabrodskii, et al, Characterization of Semiconductor Detectors of (1–30)-keV Monoenergetic and Backscattered Electrons. Bulletin of the Russian Academy of Sciences: Physics, 2008. Vol. 72, No. 11, pp. 1456–1461.
37. Cowley, A. and S. Sze, Surface States and Barrier Height of Metal Semiconductor Systems. Journal of Applied Physics, 1965. Vol. 36(10), pp. 3212-3220.
38. Hu, C.C., Modern semiconductor devices for integrated circuits. 2009: Prentice Hall.
39. Nestor J. Zaluzec, Analytical Formulae for Calculation of X-Ray Detector Solid Angles in the Scanning and Scanning/Transmission Analytical Electron Microscope, Microscopy and Microanalysis, 2014. Vol. 20(4), pp. 1318-1326.
40. Huang, S.-H. et al., The fabrication and application of Zernike electrostatic phase plate, J. Electron Microsc. (Tokyo). 2006. 55(6), 273–80.