研究生: |
郭俊毅 Kuo, Chun-Yi |
---|---|
論文名稱: |
以時間相關單光子計數系統與圓二色光譜法研究聚脯胺酸鏈長對於色胺酸對的螢光及光學活性之影響 Roles of polyprolines in the fluorescence kinetics and optical activity of tryptophan pair monitored with circular dichroism spectroscopy and time-correlated single photon counting system |
指導教授: |
朱立岡
Chu, Li-Kang |
口試委員: |
洪嘉呈
Horng, Jia-Cherng 周佳駿 Chou, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 色胺酸 、聚脯胺酸 、螢光生命期 、光學活性 |
外文關鍵詞: | tryptophan, polyproline, fluorescence lifetime, optical activity |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
改變色胺酸所處的化學環境時,其螢光強度、最強螢光波長及螢光生命期也隨之變化,故此特性常應用於鑑定蛋白質局部結構。此外色胺酸也用於研究發光團間的交互作用,包括激子轉移(exciton transfer)以及激子耦合(exciton coupling)。吾人於本研究中使用不同長度的聚脯胺酸作為兩色胺酸之間隔分子(WPnW,n=7-10、13、16),以時間相關單光子計數系統觀察WPnW分別在純水、甘油-水混合溶液、正丙醇及異丙醇中是否具有福斯特共振能量轉移現象,並且討論溶劑對於色胺酸螢光性質之影響。此外,吾人亦利用近紫外圓二色光譜觀察WPnW於水中是否具有色胺酸間的激子-激子耦合現象。
除了研究聚脯胺酸長度的影響,吾人亦合成WP、WPW、PW三種不同序列的胜肽,以觀察色胺酸改變氮端或碳端基團後其螢光生命期與光學活性的變化。其中當色胺酸接上脯胺酸時螢光生命期由一個變為兩個,且隨著胜肽序列不同,其螢光生命期也不相同。比較WP及PW的近紫外圓二色光譜顯示到當色胺酸的碳端接上脯胺酸時會增強色胺酸的光學活性,但在色胺酸的氮端接上脯胺酸時會降低色胺酸的光學活性。若比較WPW與WPnW之近紫外圓二色光譜,吾人發現聚脯胺酸的二級結構會改變色胺酸之光學活性,與Nagai等人推論色胺酸之光學活性來自於胜肽鍵磁偶極躍遷之微擾的論點相符。
Abstract
The fluorescence properties of tryptophan, in terms of intensity, maximum wavelength and lifetime, are related to the chemical surroundings and used to identify the local environments of the proteins. Furthermore, tryptophan is commonly used to observe the interactions of two chromophores, in terms of exciton transfer and exciton coupling. In this work, polyproline (PP) of different lengths serve as the spacers between two tryptophans to investigate Förster resonance energy transfer and exciton-exciton coupling.
Three peptides, WP, WPW and PW, manifested significant changes in their fluorescence lifetimes and optical activities upon changing amino group or carbonyl groups of tryptophan. When tryptophans are attached to proline, there are two time constants, whereas only one time constant was observed in the absence of proline. The near-UV circular dichroism spectra of WP and PW showed that optical activity of L-Trp decreases when modified at the amino group and increases when modified at the carbonyl group. In addition, the influence of secondary structures of polyproline on the optical activity of constituent tryptophan has been discussed. By comparing the near-UV circular dichroism spectra of WPW and WPnW, we found that polyproline would influence the optical activity of tryptophan. It is consistent with the result of Nagai et al. that the magnetic transition dipole of peptide bond will perturb the indole’s electronic transition via the chiral carbon of tryptophan.
參考文獻
第一章
1. Royer, C. A. Chem. Rev. 2006, 106, 1769-1784.
2. Talbot, F. O.; Rullo, A.; Yao, H.; Jockusch, R. A. J. Am. Chem. Soc. 2010, 132, 16156-16164.
3. Scholes, G. D. Annu. Rev. Phys. Chem. 2003, 54,57-87.
4. Kasha, M. Radiat. Res. 1963, 20, 55-70.
5. Yun, C. S.; Javier, A.; Jennings, T.; Fisher, M.; Hira, S.; Peterson, S.; Hopkins, B.; Reich, N. O.; Strouse, G. F. J. Am. Chem. Soc. 2005, 127, 3115-3119.
6. Zhang, X.; Marocico, C. A.; Lunz, M.; Gerard, V. A.; Guńko, Y. K.; Lesnyak, V.; Gaponik, N.; Susha, A. S.; Rogach, A. L.; Bradley, A. L. ACS Nano 2012, 6, 9283-9290.
7. Stryer, L.; Haugland, R. P. Proc. Natl. Acad. Sci. U. S. A. 1967, 58, 719-726.
8. Vivian, J. T.; Callis, P. R. Biophys. J. 2001, 80, 2093-2109.
9. Jameson, D. M.; Weber, G. J. Phys. Chem. 1981, 85, 953-958.
10. Gryczynski, I.; Wiczk, W.; Johnson, M. L.; Lakowicz, J. R. Biophys. Chem. 1988, 32, 173-185.
11. Nagai, M.; Nagatomo, S.; Nagai, Y.; Ohkubo, K.; Imai, K.; Kitagawa, T. Biochemistry 2012, 51, 5932-5941.
12. Nagatomo, S.; Nagai, M.; Ogura, T.; Kitagawa, T. J. Phys. Chem. B 2013, 117, 9343-9353.
第二章
1. Callis, P. R. Methods Enzymol. 1997, 278, 113-150.
2. Royer, C.A. Chem. Rev. 2006, 106, 1769-1784.
3. Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Y. P.; Sagdeev, R. Z. J. Chem. Phys. 2006, 125, 144511.
4. Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Y. P. Chem. Phys. Lett. 2004, 391, 44-49.
5. Tsentalovich, Y. P.; Snytnikova, O. A.; Sagdeev, R. Z. J. Photochem. Photobiol. A 2004, 162, 371-379.
6. Stevenson, K. L.; Papadantonakis, G. A.; LeBreton, P. R. J. Photochem. Photobiol. 2000, 133, 159-167.
7. Robbins, R. J.; Fleming, G. R.; Beddard, G. S.; Robinson, G. W.; Thistlethwaite, P. J.; Woolfe, G. J. J. Am. Chem. Soc. 1980, 102, 6271-6279.
8. Jameson, D. M.; Weber, G. J. Phys. Chem. 1981, 85, 953-958.
9. Chen, Y.; Liu, B.; Yu, H.-T.; Barkley, M. D. J. Am. Chem. Soc. 1996, 118, 9271-9278.
10. Ababou, A.; Bombarda, E. Protein Sci. 2001, 10, 2102-2113.
11. Gryczynski, I.; Wiczk, W.; Johnson, M. L.; Lakowicz, J. R. Biophys. Chem. 1988, 32, 173-185.
12. Walker, M. S.; Bednar, T. W.; Lumry, R. J. Chem. Phys. 1967, 47, 1020-1028.
13. Vivian, J. T.; Callis, P. R. Biophys. J. 2001, 80, 2093-2109.
14. Burstein, E. A.; Abornev, S. M.; Reshetnyak, Y. K. Biophys. J. 2001, 81, 1699-1709.
15. Reshetnyak, Y. K., Burstein, E. A. Biophys. J. 2001, 81, 1710-1734.
16. Reshetnyak, Y. K.; Koshevnik, Y.; Burstein, E. A. Biophys. J. 2001, 81, 1735-1758.
17. Condon, E. U.; Altar, W.; Eyring, H. J. Chem. Phys. 1937, 5, 753-775.
18. Kuhn, W. Faraday Soc. 1930, 46, 293-308.
19. Schellman, J. A. Acc. Chem. Res. 1968, 1,144-151.
20. Woody, R. W. Theory of Circular Dichroism of Proteins:1996.
21. Nagai, M.; Nagatomo, S.; Nagai, Y.; Ohkubo, K.; Imai, K.; Kitagawa, T. Biochemistry 2012, 51, 5932-5941.
22. Nagatomo, S.; Nagai, M.; Ogura, T.; Kitagawa, T. J. Phys. Chem. B 2013, 117, 9343-9353.
23. Traub, W.; Shmueli, U. Nature 1963, 198, 1165-1166.
24. Cowan, P. M.; Mcgavin, S. Nature 1955, 176, 501-503.
25. Kakinoki, S.; Hirano, Y.; Oka, M. Polym. Bull. 2005, 53, 109-115.
26. Choudhary, A.; Gandla, D.; Krow, G. R.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 7244-7246.
27. Sahoo, H. J. Photochem. Photobiol. C 2011, 12, 20-30.
28. Loura, L. M. S. Int. J. Mol. Sci. 2012, 13, 15252-15270.
29. Stryer, L.; Haugland, R. P. Proc. Natl. Acad. Sci. U. S. A. 1967, 58, 719-726.
30. Best, R. B.; Merchant, K. A.; Gopich, I. V.; Schuler, B.; Bax, A.; Eaton, W. A. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18964-18969.
31. Schuler, B.; Lipman, E. A.; Steinbach, P. J.; Kumke, M.; Eaton, W. A. ProcNatl. Acad. Sci. U. S. A. 2005, 102, 2754-2759.
32. Kates, S. A.; Albericio, F. Solid-Phase Synthesis: A Practical Guide.; Marcel Dekker, Inc.: 2000.
33. Palasek, S. A.; Cox, Z. J.; Collins, J. M. J. Pept. Sci.2007, 13, 143-148.
第三章
1. Faust, C. B. Modern Chemical Techniques: An Essential Reference for Student and Teacher.; Royal Society of Chemistry: 1992.
2. Wallace, B. A.; Janes, R. W. Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy.; IOS Press: 2009.
3. Bulheller, B. M.; Rodger, A.; Hirst, J. D. Phys. Chem. Chem. Phys. 2007, 9, 2020-2035.
4. Wei, Y.; Thyparambil, A. A.; Latour, R. A. Biochim. Biophys. Acta. 2014, 1844, 2331-2337.
5. Lin, Y. J.; Chiang, Y. C.; Horng, J. C. J. Phys. Chem. B 2014, 118, 10813 −10820.
6. Strickland, E. H. Crit. Rev. Biochem. Mol. Biol. 1974, 2, 113-175.
7. Strickland, E. H.; Horwitz, J.; Billups, C. Biochemistry 1969, 8, 3205-3213.
8. Valeur, B.; Weber, G. Photochem. Photobiol. 1977, 25, 441-444.
9. Nagai, M.; Nagatomo, S.; Nagai, Y.; Ohkubo, K.; Imai, K.; Kitagawa, T. Biochemistry 2012, 51, 5932-5941.
10. Nagatomo, S.; Nagai, M. Ogura, T. Kitagawa, T. J. Phys. Chem. B 2013, 117, 9343-9353
11. Skoog, D. A.; Leary, J. J. Principles of Instrumental Analysis.; Thomson Brooks/Cole: 2007.
12. Becker, W. Advanced Time-Correlated Single Photon Counting Applications.; Springer: 2015.
第四章
1. Whitmore, L.; Wallace, B. A. Biopolymers 2008, 89, 392-400.
2. Kakinoki, S.; Hirano, Y.; Oka, M. Polymer Bulletin 2005, 53, 109-115.
3. Chi, Z.; Asher, S. A. J. Phys. Chem. B 1998, 102, 9595-9602.
4. Lakowicz, J. R. Principles of Fluorescence Spectroscopy.; Springer: 2006.
5. Weber, G. Biochem. J. 1960, 75, 335-345.
6. EYa, A.; Likhtenstein, G.I. Mol. Biol. (Moscow) 1976, 8, 127-179.
7. Traub, W.; Shmueli, U. Nature 1963, 198, 1165-1166.
8. Gudgin-Templeton, E. F.; Ware, W. R. J. Phys. Chem. 1984, 88, 4626-4631.
9. Shizuka, H.; Serizawa, M.; Shimo, T.; Saito, I.; Matsuura, T. J. Am. Chem. Soc. 1988, 110, 1930-1934.
10. Hershberger, M. V.; Lumry, R., Verrall, R. Photochem. Photobiol. 1981, 33, 609-617.
11. Vekshin, N.; Vincent, M.; Gallay, J. Chem. Phys. Lett. 1992, 199, 459-464.
12. Albani, J. R. J. Fluoresc. 2014, 24, 105-17.
13. Albani, J. R. J. Fluoresc. 2014, 24, 93-104.
14. Chen, R. F.; Knutson, J. R.; Ziffer, H.; Porter, D. Biochemistry 1991, 30, 5184-5195.
15. M. Ziegler, Zelewsky, A. V. Coord. Chem. Rev. 1998, 177, 257-300.
16. Nagatomo, S.; Nagai, M.; Ogura, T.; Kitagawa, T. J. Phys. Chem. B 2013, 117, 9343-9353.
17. Edelhoch, H.; Lippoldt, R. E. J. Biol. Chem. 1968, 243, 4799-4805.
18. Strickland, E. H. CRC Crit. Rev. Biochem. 1974, 2, 113-175.
19. Nagatomo, S.; Nagai, M.; Ogura, T.; Kitagawa, T. J. Phys. Chem. B, 2013, 117, 9343-9353.