簡易檢索 / 詳目顯示

研究生: 趙俞婷
Chao, Yu-Ting
論文名稱: 基於水凝膠介質中發光反應之可攜式生物傳感器開發
Development of a Portable Biosensor Based on Luminescent Reactions in Hydrogel Medium
指導教授: 帕偉鄂本
Urban, Pawel L.
口試委員: 曾建銘
Tseng, Chien-Ming
庫碼
Kumar, Vinoth
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 97
中文關鍵詞: 漂白水水凝膠物聯網肉新鮮度微控制器核甘酸農藥可攜式生物傳感器
外文關鍵詞: bleach, hydrogel, Internet of Things, meat freshness, microcontroller, necleotides, pesticides, portable biosensors
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們開發了一種可攜式無線生物傳感器—BioChemPen,用於快速分析吸附在固體表面上的物質。該裝置利用在水凝膠基質中發生的(生物)冷光反應。此裝置利用水凝膠作為化學感測器及使用光敏電阻來檢測光。光的產生是來源於當含有酶、電解質溶液和所有必需反應物的水凝膠接觸於含有目標分析物的固體樣品表面並將光敏電阻放置在靠近水凝膠的位置來辨識光的強度。我們使用MicroPython PyBoard微控制器板和其他低成本電子元件來控制BioChemPen而得到的結果會立即上傳到互聯網。我們將BioChemPen應用在檢測次氯酸鈉、三磷酸腺苷、二磷酸腺苷及有機磷農藥。其一我們利用了魯米諾和過氧化氫的水凝膠對含有次氯酸鹽的清潔劑的日常生活中常接觸的物體進行的分析。其二我們使用螢光素-螢光素酶-丙酮酸激酶水凝膠檢測肉類上的三磷酸腺苷和二磷酸腺苷來判斷肉的新鮮度。最後,我們運用了在乙醯膽鹼酯酶-膽鹼氧化酶-辣根過氧化物酶水凝膠檢測蔬菜中含有的有機磷農藥—甲基毒死蜱。另外,我們利用BioChemPen檢測了次氯酸鈉、三磷酸腺苷、二磷酸腺苷和甲基毒死蜱的偵測檢測分別為 7.95×10-11 mol mm-2、2.73×10-13 mol mm-2、2.35×10-12 mol mm-2、2.59×10-10 mol mm-2。


    We present BioChemPen – a portable wireless biosensor device for rapid analysis of substances adsorbed on solid surfaces. The device takes advantage of (bio)luminescent reactions taking place in a hydrogel matrix. In a typical embodiment, the active element of this device is a hydrogel disk (chemotransducer) containing enzyme(s), electrolyte solution, and all the necessary substrates. When the hydrogel is exposed to a solid sample surface containing the target analyte, light is produced. A photoresistor (phototransducer)—placed in close proximity to the hydrogel disk—detects the light. The BioChemPen operation is enabled by a MicroPython PyBoard microcontroller board and other low-cost electronic modules. The obtained results are immediately uploaded to the Internet cloud. In one application, we demonstrate analysis of hypochlorite-containing cleaning agents on daily use objects by an assay based on hydrogel embedded with luminol and hydrogen peroxide. In another application, we use luciferin-luciferase-pyruvate kinase hydrogel to detect adenosine triphosphate (ATP), and adenosine diphosphate (ADP) on meat to verify its freshness. Lastly, we demonstrate detection of organophosphate pesticides present on vegetables with the aid of acetylcholinesterase-choline oxidase-horseradish peroxidase hydrogel. The limits of detection for sodium hypochlorite, ATP, ADP, and chlorpyrifos-methyl (a pesticide) were 7.95×10-11 mol mm-2, 2.73×10-13 mol mm-2, 2.35×10-12 mol mm-2, and 2.59×10-10 mol mm-2, respectively.

    中文摘要 i Abstract ii 謝誌 iii Table of Contents iv List of Tables vi List of Figures vii List of Acronyms xvi Chapter 1: Introduction 1 1.1 Motivation 1 1.2 Luminescence 2 1.2.1 Chemiluminescence 3 1.2.2 Bioluminescence 5 1.2.3 Photoluminescence 5 1.2.3.1 Fluorescence 6 1.2.3.2 Phosphorescence 7 1.3 Biocatalysis 8 1.3.1 Enzymes 8 1.4 Single-point light sensor 10 1.4.1 Image sensor 13 1.4.1.1 Complementary metal oxide semiconductor 14 1.4.1.2 Charge coupled device 14 1.5 Three-dimensional printer 15 1.6 Microcontroller 16 1.7 Surface analysis 18 1.8 Internet-of-Things 18 1.9 Goals of this study 19 Chapter 2: BioChemPen for Rapid Analysis of Compounds Supported on Solid Surfaces 20 2.1 Introduction 20 2.2 Experimental section 24 2.2.1 Chemicals 24 2.2.2 Calculation of limit of detection and limit of quantitation 24 2.2.3 Design and construction of BioChemPen 25 2.2.4 Preparation of hydrogel disks 34 2.2.5 Data acquisition and treatment 36 2.2.6 Real samples used to demonstrate detection of bleach residues using gel-phase luminol chemiluminescent reaction 38 2.2.7 Real samples used to demonstrate detection of ATP using gel-phase luciferase bioluminescent reaction 39 2.2.8 Real samples used to demonstrate detection of a pesticide using gel-phase multi-enzyme chemiluminescent reaction 40 2.3 Results and discussions 40 2.3.1 Proof-of-concept: detection of bleach residues using gel-phase luminol chemiluminescent reaction 40 2.3.2 Detection of ATP, and evaluation of meat freshness using gel-phase luciferase bioluminescent reaction 50 2.3.3 Detection of ADP on surfaces using gel-phase luciferase bioluminescent reaction coupled with pyruvate kinase 56 2.3.4 Optimization of reaction conditions for the detection of pesticide (chlorpyrifos-methyl) using gel-phase multi-enzyme chemiluminescent reaction 56 2.3.5 Detection of a pesticide using gel-phase multienzyme chemiluminescent reaction 60 2.4 Conclusions 67 Chapter 3: Conclusions and Future Perspective 68 References 70 Appendix 1 91

    1. World Health Organization Food Safety. https://www.who.int/health-topics/food-safety (accessed June 22, 2021).
    2. SmartSense The 4 Primary Food Safety Hazards and Preventing Foodborne Illness. https://blog.smartsense.co/food-safety-education-month-hazards-prevention (accessed June 22, 2021).
    3. Handford, C. E.; Elliott, C. T.; Campbell, K. A Review of the Global Pesticide Legislation and the Scale of Challenge in Reaching the Global Harmonization of Food Safety Standards. Integr. Environ. Assess. Manag. 2015, 11, 525-536.
    4. Parr, B. The Importance of Environmental Monitoring. https://www.carli.illinois.edu/products-services/collections-management/importance-of-environmental-monitoring (accessed July 13, 2021).
    5. Shugart, J. M. Utilizing the Emergency Responder Health Monitoring and Surveillance System to Prepare for and Respond to Emergencies. J. Environ. Health 2017, 80, 44-47.
    6. Wang, M.; Webber, M.; Finlayson, B.; Barnett, J. Rural Industries and Water Pollution in China. J. Environ. Manag. 2008, 86, 648-659.
    7. Skalny, A. V. Evaluation and Correction of Elemental Status of the Population as a Perspective Direction of National Healthcare and Environmental Monitoring. http://journal.microelements.ru/viwe_3.php?info_id=642 (accessed July 13, 2021).
    8. Suman, R.; Javaid, M.; Haleem, A.; Vaishya, R.; Bahl, S.; Nandan, D. Sustainability of Coronavirus on Different Surfaces. J. Clin. Exp. Hepatol. 2020, 10, 386-390.
    9. Center for Disease Control and Prevention Frequently Asked Questions (FAQs) About Sodium Hypochlorite Solution (SH). https://www.cdc.gov/safewater/chlorination-faq.html (accessed June 22, 2021).
    10. World Health, O. Cleaning and Disinfection of Environmental Surfaces in the Context of Covid-19: Interim Guidance. https://www.who.int/publications/i/item/cleaning-and-disinfection-of-environmental-surfaces-inthe-context-of-covid-19 (accessed July 13, 2021).
    11. Sherlock, O.; O'Connell, N.; Creamer, E.; Humphreys, H. Is It Really Clean? An Evaluation of the Efficacy of Four Methods for Determining Hospital Cleanliness. J. Hosp. Infect. 2009, 72, 140-146.
    12. Cetin, A. E.; Coskun, A. F.; Galarreta, B. C.; Huang, M.; Herman, D.; Ozcan, A.; Altug, H. Handheld High-Throughput Plasmonic Biosensor Using Computational on-Chip Imaging. Light Sci. Appl. 2014, 3, e122-e122.
    13. Wang, S.; Chinnasamy, T.; Lifson, M. A.; Inci, F.; Demirci, U. Flexible Substrate-Based Devices for Point-of-Care Diagnostics. Trends Biotechnol. 2016, 34, 909-921.
    14. Pachimsawat, P.; Tangprasert, K.; Jantaratnotai, N. The Calming Effect of Roasted Coffee Aroma in Patients Undergoing Dental Procedures. Sci. Rep. 2021, 11, 1384.
    15. Tu, J.; Torrente-Rodríguez, R. M.; Wang, M.; Gao, W. The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors. Adv. Funct. Mater. 2020, 30, 1906713.
    16. Murthy, K. V. R.; Virk, H. S. Luminescence Phenomena: An Introduction. Defect Diffus. Forum 2014, 347, 1-34.
    17. Vij, D., Luminescence of Solids. Springer Science & Business Media, 2012.
    18. Cohen, I. B. A History of Luminescence from the Earliest Times until 1900. Am. Hist. Rev. 1958, 63, 937-939.
    19. Anctil, M., Luminous Creatures: The History and Science of Light Production in Living Organisms. McGill-Queen's University Press, 2018.
    20. Roberts, R. G. Luminescence Dating in Archaeology:From Origins to Optical. Radiat. Meas. 1997, 27, 819-892.
    21. Edinburgh Instruments Jablonski Diagram. https://www.edinst.com/blog/jablonski- diagram/ (accessed July 13, 2021).
    22. Frackowiak, D. The Jablonski Diagram. J. Photochem. Photobiol. B, Biol. 1988, 2, 399.
    23. Dodeigne, C.; Thunus, L.; Lejeune, R. Chemiluminescence as Diagnostic Tool. A Review. Talanta 2000, 51, 415-439.
    24. Jungreis, E.; Ben-Dor, L., Chapter 1 - Organic Spot Test Analysis. In Comprehensive Analytical Chemistry, G. Svehla, Ed. Elsevier, 1980; pp 1-60.
    25. Lumigen Chemiluminescence. http://www.lumigen.com/detection-technologies/chemiluminescence (accessed July 13, 2021).
    26. Liu, Y.; Huang, X.; Ren, J. Recent Advances in Chemiluminescence Detection Coupled with Capillary Electrophoresis and Microchip Capillary Electrophoresis. Electrophoresis 2016, 37, 2-18.
    27. Khataee, A.; Lotfi, R.; Hasanzadeh, A.; Iranifam, M.; Joo, S. W. Flow-Injection Chemiluminescence Analysis for Sensitive Determination of Atenolol Using Cadmium Sulfide Quantum Dots. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 157, 88-95.
    28. Huertas-Pérez, J. F.; Moreno-González, D.; Airado-Rodríguez, D.; Lara, F. J.; García-Campaña, A. M. Advances in the Application of Chemiluminescence Detection in Liquid Chromatography. Trends Anal. Chem. 2016, 75, 35-48.
    29. Dil, E. A.; Ghaedi, M.; Asfaram, A. Application of Hydrophobic Deep Eutectic Solvent as the Carrier for Ferrofluid: A Novel Strategy for Pre-Concentration and Determination of Mefenamic Acid in Human Urine Samples by High Performance Liquid Chromatography under Experimental Design Optimization. Talanta 2019, 202, 526-530.
    30. Yan, N.; Zhu, Z.; He, D.; Jin, L.; Zheng, H.; Hu, S. Simultaneous Determination of Size and Quantification of Gold Nanoparticles by Direct Coupling Thin Layer Chromatography with Catalyzed Luminol Chemiluminescence. Sci. Rep. 2016, 6, 1-11.
    31. Shahvar, A.; Saraji, M.; Shamsaei, D. Smartphone-Based Chemiluminescence Sensing for Tlc Imaging. Sens. Actuators B Chem. 2018, 255, 891-894.
    32. Lee, J. A History of Bioluminescence. http://photobiology.info/HistBiolum/HistBiolum.html (accessed July 13, 2021).
    33. Lancaster, J. S. Chemiluminescence Detection in Analytical Chemistry. Endeavour 1992, 16, 194-200.
    34. Weeks, I., Chapter 2 Chemiluminescence: The Phenomenon. In Comprehensive Analytical Chemistry, Elsevier, 1992; pp 7-52.
    35. Albrecht, H. O. über Die Chemiluminescenz Des Aminophthalsäurehydrazids. Z. Phys. Chem. 1928, 136U, 321-330.
    36. Vorob'eva, T. P.; Kozlov, Y. N.; Koltypin, Y. V.; Purmal, A. P.; Rusin, B. A.; Tal'roze, V. L.; Frankevich, E. L. Processes Involved in Luminol Oxidation Accompanied by Chemiluminescence. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1976, 25, 2043-2048.
    37. Fatoki, T. H. In-Silico Investigation of Luminol, Its Analogues and Improved Mechanism of Chemiluminescence for Blood Identification Beyond Forensics. bioRxiv 2020.
    38. Akhrem, A.; Semenkova, G.; Cherenkevich, S.; Popova, Y. M.; Kiselev, P. Chemiluminescence of Luminol Caused by Interaction of Cytochrome P-450 and Cytochrome C with Cumene Hydroperoxide: Comparative Studies. Biomed. Biochim. Acta 1985, 44, 1591-1597.
    39. Li, F.; Zhang, Y.; Liu, J.; He, J. Luminol, Horseradish Peroxidase and Antibody Ternary Codified Gold Nanoparticles for a Label-Free Homogenous Chemiluminescent Immunoassay. Anal. Methods 2018, 10, 722-729.
    40. Song, Y.; Zhang, W.; He, S.; Shang, L.; Ma, R.; Jia, L.; Wang, H. Perylene Diimide and Luminol as Potential-Resolved Electrochemiluminescence Nanoprobes for Dual Targets Immunoassay at Low Potential. ACS Appl. Mater. Interfaces 2019, 11, 33676-33683.
    41. Hanif, S.; Han, S.; John, P.; Gao, W.; Kitte, S. A.; Xu, G. Electrochemiluminescence of Luminol-Tripropylamine System. Electrochim. Acta 2016, 196, 245-251.
    42. Zhang, W.; Hao, L.; Huang, J.; Xia, L.; Cui, M.; Zhang, X.; Gu, Y.; Wang, P. Chemiluminescence Chitosan Hydrogels Based on the Luminol Analog L-012 for Highly Sensitive Detection of Ros. Talanta 2019, 201, 455-459.
    43. Riaz, U.; Jadoun, S.; Kumar, P.; Arish, M.; Rub, A.; Ashraf, S. Influence of Luminol Doping of Poly (O-Phenylenediamine) on the Spectral, Morphological, and Fluorescent Properties: A Potential Fluorescent Marker for Early Detection and Diagnosis of Leishmania Donovani. ACS Appl. Mater. Interfaces 2017, 9, 33159-33168.
    44. Fang, C.; Li, H.; Yan, J.; Guo, H.; Yifeng, T. Progress of the Electrochemiluminescence Biosensing Strategy for Clinical Diagnosis with Luminol as the Sensing Probe. ChemElectroChem 2017, 4, 1587-1593.
    45. Khoshfetrat, S. M.; Bagheri, H.; Mehrgardi, M. A. Visual Electrochemiluminescence Biosensing of Aflatoxin M1 Based on Luminol-Functionalized, Silver Nanoparticle-Decorated Graphene Oxide. Biosens. Bioelectron. 2018, 100, 382-388.
    46. Chládková, G.; Kunovská, K.; Chocholouš, P.; Polášek, M.; Sklenářová, H. Automatic Screening of Antioxidants Based on the Evaluation of Kinetics of Suppression of Chemiluminescence in a Luminol–Hydrogen Peroxide System Using a Sequential Injection Analysis Setup with a Flow-Batch Detection Cell. Anal. Methods 2019, 11, 2531-2536.
    47. Wang, C.; Chen, L.; Wang, P.; Li, M.; Liu, D. A Novel Ultrasensitive Electrochemiluminescence Biosensor for Glutathione Detection Based on Poly-L-Lysine as Co-Reactant and Graphene-Based Poly (Luminol/Aniline) as Nanoprobes. Biosens. Bioelectron. 2019, 133, 154-159.
    48. Zhang, X.; Li, W.; Zhou, Y.; Chai, Y.; Yuan, R. An Ultrasensitive Electrochemiluminescence Biosensor for Microrna Detection Based on Luminol-Functionalized Au NPs@ ZnO Nanomaterials as Signal Probe and Dissolved O2 as Coreactant. Biosens. Bioelectron. 2019, 135, 8-13.
    49. Karabchevsky, A.; Mosayyebi, A.; Kavokin, A. V. Tuning the Chemiluminescence of a Luminol Flow Using Plasmonic Nanoparticles. Light Sci. Appl. 2016, 5, e16164-e16164.
    50. Stoica, B. A.; Bunescu, S.; Neamtu, A.; Bulgaru‐Iliescu, D.; Foia, L.; Botnariu, E. G. Improving Luminol Blood Detection in Forensics. J. Forensic Sci. 2016, 61, 1331-1336.
    51. Seitz, W. R. Chemiluminescence from the Reaction between Hypochlorite and Luminol. J. Phys. Chem. 1975, 79, 101-106.
    52. Davis, M. P.; Holcroft, N. I.; Wiley, E. O.; Sparks, J. S.; Leo Smith, W. Species-Specific Bioluminescence Facilitates Speciation in the Deep Sea. Mar. Biol. 2014, 161, 1139-1148.
    53. Garm, A.; Bielecki, J.; Petie, R.; Nilsson, D.-E. Hunting in Bioluminescent Light: Vision in the Nocturnal Box Jellyfish Copula Sivickisi. Front. Physiol. 2016, 7, 99.
    54. Haddock, S. H. D.; Moline, M. A.; Case, J. F. Bioluminescence in the Sea. Ann. Rev. Mar. Sci. 2009, 2, 443-493.
    55. Milne, B. F.; Marques, M. A. L.; Nogueira, F. Fragment Molecular Orbital Investigation of the Role of Amp Protonation in Firefly Luciferase Ph-Sensitivity. Phys. Chem. Chem. Phys. 2010, 12, 14285-14293.
    56. Fan, F.; Wood, K. V. Bioluminescent Assays for High-Throughput Screening. Assay Drug Dev. Technol. 2007, 5, 127-136.
    57. Stanley, P. E. A Review of Bioluminescent ATP Techniques in Rapid Microbiology. J. Biolumin. Chemilumin. 1989, 4, 375-380.
    58. Kaskova, Z. M.; Tsarkova, A. S.; Yampolsky, I. V. 1001 Lights: Luciferins, Luciferases, Their Mechanisms of Action and Applications in Chemical Analysis, Biology and Medicine. Chem. Soc. Rev. 2016, 45, 6048-6077.
    59. Samara, F.; Gullett, B. K.; Harrison, R. O.; Chu, A.; Clark, G. C. Determination of Relative Assay Response Factors for Toxic Chlorinated and Brominated Dioxins/Furans Using an Enzyme Immunoassay (EIA) and a Chemically-Activated Luciferase Gene Expression Cell Bioassay (CALUX). Environ. Int. 2009, 35, 588-593.
    60. Edinburgh Instruments What Is the Difference between Luminescence, Photoluminescence, Fluorescence, and Phosphorescence? https://www.edinst.com/us/blog/photoluminescence-differences/ (accessed July 17, 2021).
    61. Srivastava, A.; Tripathi, C. S. P.; Singh, V. K.; Srivastava, R. R.; Pandey, S. K.; Rai, S.; Dutt, R.; Patel, A. K., Characterizations of Nanoscale Two-Dimensional Materials and Heterostructures. In 2d Nanoscale Heterostructured Materials, Elsevier, 2020; pp 55-90.
    62. Abraham, J.; Jose, B.; Jose, A.; Thomas, S., Chapter 2 - Characterization of Green Nanoparticles from Plants. In Phytonanotechnology, N. Thajuddin and S. Mathew, Eds. Elsevier, 2020; pp 21-39.
    63. Bhagyaraj, S.; Oluwafemi, O. S.; Krupa, I., Chapter 13 - Polymers in Optics. In Polymer Science and Innovative Applications, M. A. A. AlMaadeed, D. Ponnamma and M. A. Carignano, Eds. Elsevier, 2020; pp 423-455.
    64. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of Instrumental Analysis. Cengage learning, 2017.
    65. Jameson, D. M., Introduction to Fluorescence. Taylor & Francis, 2014.
    66. Fini, J.-B.; Le Mével, S.; Turque, N.; Palmier, K.; Zalko, D.; Cravedi, J.-P.; Demeneix, B. A. An in Vivo Multiwell-Based Fluorescent Screen for Monitoring Vertebrate Thyroid Hormone Disruption. Environ. Sci. Technol. 2007, 41, 5908-5914.
    67. Tseng, S.-T.; Hamada, M.; Chiao, C.-H. Using Degradation Data to Improve Fluorescent Lamp Reliability. J. Qual. Technol. 1995, 27, 363-369.
    68. Ghosh, K. K.; Burns, L. D.; Cocker, E. D.; Nimmerjahn, A.; Ziv, Y.; El Gamal, A.; Schnitzer, M. J. Miniaturized Integration of a Fluorescence Microscope. Nat. Methods 2011, 8, 871.
    69. Hemmilá, I.; Mukkala, V.-M. Time-Resolution in Fluorometry Technologies, Labels, and Applications in Bioanalytical Assays. Crit. Rev. Clin. Lab. Sci. 2001, 38, 441-519.
    70. Koenig, J. L., Chapter 5 - Raman Spectroscopy of Polymers. In Spectroscopy of Polymers (Second Edition), J. L. Koenig, Ed. Elsevier Science, 1999; pp 207-254.
    71. Libertexts Fluorescence and Phosphorescence. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Fluorescence_and_Phosphorescence (accessed July 13, 2021).
    72. Helmenstine, A. What Is Phosphorescence? Definition and Examples. https://sciencenotes.org/what-is-phosphorescence-definition-and-examples/ (accessed June 22, 2021).
    73. Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode. J. Am. Chem. Soc. 2003, 125, 12971-12979.
    74. Bolink, H. J.; De Angelis, F.; Baranoff, E.; Klein, C.; Fantacci, S.; Coronado, E.; Sessolo, M.; Kalyanasundaram, K.; Grätzel, M.; Nazeeruddin, M. K. White-Light Phosphorescence Emission from a Single Molecule: Application to Oled. Chem. Commun. 2009, 4672-4674.
    75. Freudenrich, C. How Oleds Work. https://electronics.howstuffworks.com/oled5.htm (accessed July 18, 2021).
    76. Yeşilay, S.; Karasu, B.; Karacaoglu, E. In General Review of Application of Phosphorescence Pigments in Ceramic Industry, SERES’09 I. International, Ceramic, Glass, Porcelain Enamel, Glaze and Pigment, Eskisehir, Turkey, 2009.
    77. Paul, P. E. V.; Sangeetha, V.; Deepika, R. G., Chapter 9 - Emerging Trends in the Industrial Production of Chemical Products by Microorganisms. In Recent Developments in Applied Microbiology and Biochemistry, V. Buddolla, Ed. Academic Press, 2019; pp 107-125.
    78. Thompson, L. A.; Rowbotham, J. S.; Reeve, H. A.; Zor, C.; Grobert, N.; Vincent, K. A., Chapter Thirteen - Biocatalytic Hydrogenations on Carbon Supports. In Methods Enzymol., C. V. Kumar, Ed. Academic Press, 2020; pp 303-325.
    79. Zhang, G.; Schmidt-Dannert, S.; Quin, M. B.; Schmidt-Dannert, C., Chapter Thirteen - Protein-Based Scaffolds for Enzyme Immobilization. In Methods Enzymol., C. Schmidt-Dannert and M. B. Quin, Eds. Academic Press, 2019; pp 323-362.
    80. Lewis, G. H. a. J. C. Introduction: Biocatalysis in Industry. Chem. Rev. 2018, 118, 1-3.
    81. Grunwald, P., Biocatalysis: Biochemical Fundamentals and Applications. 2nd ed.; World Scientific, 2017; p 1316.
    82. Akoh, C. C.; Chang, S.-W.; Lee, G.-C.; Shaw, J.-F. Biocatalysis for the Production of Industrial Products and Functional Foods from Rice and Other Agricultural Produce. J. Agric. Food. Chem. 2008, 56, 10445-10451.
    83. Chattopadhyay, S.; Raychaudhuri, U.; Chakraborty, R. Artificial Sweeteners – a Review. Int. J. Food Sci. Technol. 2014, 51, 611-621.
    84. Suzana Ferreira-Dias, G. S., Francisco Plou, Francisco Valero The Potential Use of Lipases in the Production of Fatty Acid Derivatives for the Food and Nutraceutical Industries. Electron. J. Biotechnol. 2013, 16, 12.
    85. Tao, J.; Xu, J.-H. Biocatalysis in Development of Green Pharmaceutical Processes. Curr. Opin. Chem. Biol. 2009, 13, 43-50.
    86. Patel, R. N. Biocatalysis for Synthesis of Pharmaceuticals. Biorg. Med. Chem. 2018, 26, 1252-1274.
    87. Alcalde, M.; Ferrer, M.; Plou, F. J.; Ballesteros, A. Environmental Biocatalysis: From Remediation with Enzymes to Novel Green Processes. Trends Biotechnol. 2006, 24, 281-287.
    88. Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K. Engineering the Third Wave of Biocatalysis. Nature 2012, 485, 185-194.
    89. Sheldon, R. A.; van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem. Soc. Rev. 2013, 42, 6223-6235.
    90. Silva, C.; Cavaco-Paulo, A. M.; Fu, J. J., 5 - Enzymatic Biofinishes for Synthetic Textiles. In Functional Finishes for Textiles, R. Paul, Ed. Woodhead Publishing, 2015; pp 153-191.
    91. Illanes, A., Enzyme Biocatalysis. 1 ed.; Springer Netherlands, 2008.
    92. Abedi, D.; Zhang, L.; Pyne, M.; Perry Chou, C., 1.03 - Enzyme Biocatalysis. In Comprehensive Biotechnology (Second Edition), M. Moo-Young, Ed. Academic Press, 2011; pp 15-24.
    93. Openstax Enzymes. https://cnx.org/contents/GFy_h8cu@9.85:MnC6GuJi@7/Enzymes (accessed June 22, 2021).
    94. Regtien, P.; Dertien, E., 4 - Resistive Sensors. In Sensors for Mechatronics (Second Edition), P. Regtien and E. Dertien, Eds. Elsevier, 2018; pp 61-113.
    95. Venkatanarayanan, A.; Spain, E., 13.03 - Review of Recent Developments in Sensing Materials. In Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. Van Tyne and B. Yilbas, Eds. Elsevier, 2014; pp 47-101.
    96. Miroshnikova, I. N.; Komissarov, A. L.; Miroshnikov, B. N. Noise of Pbs-Based Semiconductor Photoresistors. Meas. Tech. 2010, 53, 620-625.
    97. Filatov, A. V.; Susov, E. V.; Karpov, V. V.; Zhilkin, V. A.; Ljubchenko, S. P.; Kusnezov, N. S.; Marushchenko, A. V. Independent Operation Time of Photodetectors of the (3—5)-Μm Spectral Band Based on Insb and Cdhgte Heteroepitaxial Structures. J. Commun. Technol. Electron. 2017, 62, 326-330.
    98. Regtien, P.; Dertien, E., 7 - Optical Sensors. In Sensors for Mechatronics (Second Edition), P. Regtien and E. Dertien, Eds. Elsevier, 2018; pp 183-243.
    99. Electronics notes Light Dependent Resistor LDR: Photoresistor. https://www.electronics-notes.com/articles/electronic_components/resistors/light-dependent-resistor-ldr.php (accessed June 22, 2021).
    100. LinkSprite Playgound Photo Cell Sensor. https://www.linksprite.com/wiki/index.php?title=Photo_Cell_Sensor (accessed July 18, 2021).
    101. Physics and Radio Electronics Photodiode. https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/semiconductor-diodes/photodiodesymboltypes.html (accessed July 13, 2021).
    102. Contents. Principles of Semiconductor Devices. https://ecee.colorado.edu/~bart/book/book/contents.htm (accessed June 22, 2021).
    103. Zalewski, E. F.; Duda, C. R. Silicon Photodiode Device with 100% External Quantum Efficiency. Appl. Opt. 1983, 22, 2867-2873.
    104. Lischke, S.; Knoll, D.; Mai, C.; Zimmermann, L.; Peczek, A.; Kroh, M.; Trusch, A.; Krune, E.; Voigt, K.; Mai, A. High Bandwidth, High Responsivity Waveguide-Coupled Germanium P-I-N Photodiode. Opt. Express 2015, 23, 27213-27220.
    105. Larason, T. C.; Bruce, S. S. Spatial Uniformity of Responsivity for Silicon, Gallium Nitride, Germanium, and Indium Gallium Arsenide Photodiodes. Metrologia 1998, 35, 491-496.
    106. Roshni, Y. Photodiode. https://circuitglobe.com/photodiode.html (accessed June 22, 2021).
    107. Ren, H.; Chen, J.-D.; Li, Y.-Q.; Tang, J.-X. Recent Progress in Organic Photodetectors and Their Applications. Adv. Sci. 2021, 8, 2002418.
    108. Circullt Globe Phototransistor. https://circuitglobe.com/phototransistor.html (accessed July 13, 2021).
    109. Bhakti Phototransistor. https://electronicscoach.com/phototransistor.html (accessed June 22, 2021).
    110. Electronics notes What Is a Phototransistor. https://www.electronics-notes.com/articles/electronic_components/transistor/what-is-a-phototransistor-tutorial.php (accessed June 22, 2021).
    111. RF wireless world Difference between Photodiode and Phototransistor. https://www.rfwireless-world.com/Terminology/photo-diode-vs-photo-transistor.html (accessed July 13, 2021).
    112. Bates, M., Interfacing PIC Microcontrollers. 2nd ed.; Newnes, 2014.
    113. Kao, K. In Electrical Conduction and Photoconduction, 2004.
    114. Yu, Y.; Zhang, Y.; Song, X.; Zhang, H.; Cao, M.; Che, Y.; Dai, H.; Yang, J.; Zhang, H.; Yao, J. PbS-Decorated WS2 Phototransistors with Fast Response. ACS Photonics 2017, 4, 950-956.
    115. Electronics Coach Phototransistor. https://electronicscoach.com/phototransistor.html (accessed July 18, 2021).
    116. Damjanovski, V. 5 - CCTV Cameras. In CCTV (Third Edition), V. Damjanovski, Ed. Butterworth-Heinemann, 2014; pp 152-211.
    117. Brickcom Image Sensor. https://www.brickcom.com/news/press-release_detailview.php?id=263 (accessed June 22, 2021).
    118. Tokyo Electron Limited What Is a CMO Image Sensor. https://www.tel.com/museum/exhibition/principle/cmos.html (accessed July 18, 2021).
    119. Kim Ho, Y.; Muammar Mohamad, I.; Siu Hong, L. Introductory Chapter: Integrated Circuit Chip. 2020.
    120. HighTech MOSFET是什麼?有什麼應用產品. https://www.stockfeel.com.tw/mosfet-%E6%98%AF%E4%BB%80%E9%BA%BC/ (accessed July 13, 2021).
    121. Mehta, S.; Patel, A.; Mehta, J. In CCD or CMOS Image Sensor for Photography, 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, 2015; pp 0291-0294.
    122. Takai, I.; Ito, S.; Yasutomi, K.; Kagawa, K.; Andoh, M.; Kawahito, S. LED and CMOS Image Sensor Based Optical Wireless Communication System for Automotive Applications. IEEE Photon. J. 2013, 5, 6801418-6801418.
    123. Bigas, M.; Cabruja, E.; Forest, J.; Salvi, J. Review of CMOS Image Sensors. Microelectron. J. 2006, 37, 433-451.
    124. Robert, C. S.; Bedabrata, P.; Thomas, J. C.; Bruce, R. H.; Guang, Y.; Julie, B. H.; Christopher, J. W. In Advances in Ultralow-Power Highly Integrated Active Pixel Sensor CMOS Imagers for Space and Radiation Environments, Proc.SPIE, 2002.
    125. Wandell, B. A.; Gamal, A. E.; Girod, B. Common Principles of Image Acquisition Systems and Biological Vision. Proc. IEEE Inst. Electr. Electron. Eng. 2002, 90, 5-17.
    126. SlideToDoc CMOS Analog Design Using Allregion Mosfet Modeling. https://slidetodoc.com/cmos-analog-design-using-allregion-mosfet-modeling-chapter-3/ (accessed July 18, 2021).
    127. Lesser, M., 3 - Charge Coupled Device Image Sensors. In High Performance Silicon Imaging, D. Durini, Ed. Woodhead Publishing, 2014; pp 78-97.
    128. Zhang, P., Chapter 3 - Sensors and Actuators. In Advanced Industrial Control Technology, P. Zhang, Ed. William Andrew Publishing, 2010; pp 73-116.
    129. Choudhury, A. K. R., 6 - Colour Measurement Instruments. In Principles of Colour and Appearance Measurement, A. K. R. Choudhury, Ed. Woodhead Publishing, 2014; pp 221-269.
    130. System, C. Anatomy of a Charge-Coupled Device. http://cctvsystemblog.blogspot.com/2013/07/anatomy-of-charge-coupled-device.html (accessed June 22, 2021).
    131. Chun, R. F.-Y. A High Voltage Charge-Coupled Device (CCD) Controller ASIC for the Large Synoptic Survey Telescope (LSST). Master's Thesis, University of Tennessee, 2010.
    132. de Sena, R. C.; Soares, M.; Pereira, M. L. O.; da Silva, R. C. D.; do Rosário, F. F.; da Silva, J. F. C. A Simple Method Based on the Application of a CCD Camera as a Sensor to Detect Low Concentrations of Barium Sulfate in Suspension. Sensors (Basel) 2011, 11, 864-875.
    133. Ono, T.; Ishii, H.; Kawamura, K.; Miura, H.; Momma, E.; Fujisawa, T.; Hozumi, J. Application of Neural Network to Analyses of CCD Colour TV-Camera Image for the Detection of Car Fires in Expressway Tunnels. Fire Saf. J. 2006, 41, 279-284.
    134. Fossum, E. R.; Hondongwa, D. B. A Review of the Pinned Photodiode for CCD and CMOS Image Sensors. IEEE J. Electron Devices Soc. 2014, 2, 33-43.
    135. Chun, R. F. In A High Voltage Charge-Coupled Device (CCD) Controller ASIC for the Large Synoptic Survey Telescope (LSST), 2010.
    136. Schubert, C.; van Langeveld, M. C.; Donoso, L. A. Innovations in 3D Printing: A 3D Overview from Optics to Organs. Br. J. Ophthalmol. 2014, 98, 159.
    137. Bell, C. Maintaining and Troubleshooting Your 3D Printer. Apress, 2014.
    138. Bogue, R. 3D Printing: The Dawn of a New Era in Manufacturing? Assem. Autom. 2013, 33, 307-311.
    139. AddMaker 不只有 FDM、SLA!七種常見 3D 列印成型技術原理大集合. https://mag.addmaker.tw/2020/12/28/7-3d-print-technology/ (accessed June 22, 2021).
    140. Kalender, M.; Kılıç, S. E.; Ersoy, S.; Bozkurt, Y.; Salman, S. In Additive Manufacturing and 3d Printer Technology in Aerospace Industry, 2019 9th International Conference on Recent Advances in Space Technologies (RAST), 11-14 June 2019; 2019; pp 689-694.
    141. Campbell, T.; Williams, C.; Ivanova, O.; Garrett, B. Could 3D Printing Change the World? Technologies, Potential, and Implications of Additive Manufacturing; Atlantic Council: 2011.
    142. Vasseur, J.-P.; Dunkels, A., Chapter 11 - Smart Object Hardware and Software. In Interconnecting Smart Objects with IP, J.-P. Vasseur and A. Dunkels, Eds. Morgan Kaufmann, 2010; pp 119-145.
    143. Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chem. Rev. 2020, 120, 9482-9553.
    144. Keim, R. What Is a Microcontroller? The Defining Characteristics and Architecture of a Common Component. https://www.allaboutcircuits.com/technical-articles/what-is-a-microcontroller-introduction-component-characteristics-component/ (accessed June 22, 2021).
    145. Abd, M.; Mowad, E.-l.; Fathy, A.; Hafez, A. In Smart Home Automated Control System Using Android Application and Microcontroller, 2014.
    146. Titovskaya, N. V.; Titovskaya, T. S.; Titovskii, S. N. The Prospects of Microcontroller Application in the Agriculture Digitalization. IOP Conf. Ser. Earth Environ. Sci. 2019, 315, 032011.
    147. Schlich, B.; Salewski, F.; Kowalewski, S. In Applying Model Checking to an Automotive Microcontroller Application, 2007 International Symposium on Industrial Embedded Systems, 4-6 July 2007; 2007; pp 209-216.
    148. Arduino https://www.arduino.cc/ (accessed June 22, 2021).
    149. Arduino Nano https://store.arduino.cc/usa/arduino-nano (accessed June 22, 2021).
    150. Arduino Due https://store.arduino.cc/usa/due (accessed June 22, 2021).
    151. Arduino Uno Rev3 https://store.arduino.cc/usa/arduino-uno-rev3 (accessed June 22, 2021).
    152. Kemis, H.; Bruce, N.; Wang, P.; Antonio, T.; Lee Byung, G.; Hoon Jae, L. In Healthcare Monitoring Application in Ubiquitous Sensor Network: Design and Implementation Based on Pulse Sensor with Arduino, 2012 6th International Conference on New Trends in Information Science, Service Science and Data Mining (ISSDM2012), 23-25 Oct. 2012; 2012; pp 34-38.
    153. Patil, A.; Beldar, M.; Naik, A.; Deshpande, S. In Smart Farming Using Arduino and Data Mining, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 16-18 March 2016; 2016; pp 1913-1917.
    154. Swain, K. B.; Santamanyu, G.; Senapati, A. R. In Smart Industry Pollution Monitoring and Controlling Using Labview Based IOT, 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), 4-5 May 2017; 2017; pp 74-78.
    155. MicroPython - Python for microcontrollers https://store.micropython.org/product/PYBD-SF6-W4F2 (accessed June 22, 2021).
    156. Scholz, A.; Juang, J.-N.; Mader, P.; Schlegel, J.; Starcik, M. Spacecan - a Low-Cost, Reliable and Robust Control and Monitoring Bus for Small Satellites. Acta Astronaut. 2019, 161, 1-11.
    157. Dinsdale, J.; George, D. P., An Integrated Hardware, Software and Training Platform for Teaching Primary School Students Engineering and Stem Subjects. In: Wec2019: World Engineers Convention 2019. Melbourne: Engineers Australia, 2019: 1252-1260., Engineers Australia, 2019.
    158. Wei, Y.; Cao, Q.; Hargrove, L.; Gu, J. In A Wearable Bio-Signal Processing System with Ultra-Low-Power Soc and Collaborative Neural Network Classifier for Low Dimensional Data Communication, 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 20-24 July 2020; pp 4002-4007.
    159. Ebnesajjad, S., Chapter 4 - Surface and Material Characterization Techniques. In Surface Treatment of Materials for Adhesive Bonding (Second Edition), S. Ebnesajjad, Ed. William Andrew Publishing, 2014; pp 39-75.
    160. USTC What Is Surface Analysis? http://staff.ustc.edu.cn/~mams/escalab/whatis.html (accessed June 22, 2021).
    161. Vickerman, J. C.; Gilmore, I. S., Surface Analysis: The Principal Techniques. Wiley, 2011.
    162. Sanders, N. L.; Kothari, S.; Huang, G.; Salazar, G.; Cooks, R. G. Detection of Explosives as Negative Ions Directly from Surfaces Using a Miniature Mass Spectrometer. Anal. Chem. 2010, 82, 5313-5316.
    163. Rivoire, K.; Lin, Z.; Hatami, F.; Masselink, W. T.; Vučković, J. Second Harmonic Generation in Gallium Phosphide Photonic Crystal Nanocavities with Ultralow Continuous Wave Pump Power. Opt. Express 2009, 17, 22609-22615.
    164. Kenton, W. The Internet of Things (IOT). https://www.investopedia.com/terms/i/internet-things.asp (accessed June 22, 2021).
    165. Kiran, D. R., Chapter 35 - Internet of Things. In Production Planning and Control, D. R. Kiran, Ed. Butterworth-Heinemann, 2019; pp 495-513.
    166. Abdul-Qawy, S.; Pramod, P.; Magesh, E.; Srinivasulu, T. In The Internet of Things ( IOT ) : An Overview Antar, 2015.
    167. Elder, J. https://blog.avast.com/kevin-ashton-named-the-internet-of-things (accessed June 22, 2021).
    168. Clark, J. What Is the Internet of Things (IOT)? https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/ (accessed June 22, 2021).
    169. Chang, K. Bluetooth: A Viable Solution for IOT? [Industry Perspectives]. IEEE Wireless Commun. Lett. 2014, 21, 6-7.
    170. Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in Agriculture, Recent Advances and Future Challenges. Biosyst. Eng. 2017, 164, 31-48.
    171. Wei, Z.; Chaowei, W.; Nakahira, Y. In Medical Application on Internet of Things, IET International Conference on Communication Technology and Application (ICCTA 2011), 14-16 Oct. 2011; 2011; pp 660-665.
    172. Zhang, D.; Liu, Q. Biosensors and Bioelectronics on Smartphone for Portable Biochemical Detection. Biosens. Bioelectron. 2016, 75, 273-284.
    173. Garzón, V.; Pinacho, D. G.; Bustos, R.-H.; Garzón, G.; Bustamante, S. Optical Biosensors for Therapeutic Drug Monitoring. Biosensors (Basel) 2019, 9, 132.
    174. Lukyanenko, K. A.; Denisov, I. A.; Sorokin, V. V.; Yakimov, A. S.; Esimbekova, E. N.; Belobrov, P. I. Handheld Enzymatic Luminescent Biosensor for Rapid Detection of Heavy Metals in Water Samples. Chemosensors 2019, 7, 16.
    175. Kassal, P.; Steinberg, M. D.; Steinberg, I. M. Wireless Chemical Sensors and Biosensors: A Review. Sens. Actuators B-Chem. 2018, 266, 228-245.
    176. Baldock, J. D. Microbiological Monitoring of the Food Plant: Methods to Assess Bacterial Contamination on Surfaces1. J. Milk Food Technol. 1974, 37, 361-368.
    177. Andersen, B. M., Prevention and Control of Infections in Hospitals: Practice and Theory. Springer International Publishing, 2019.
    178. Arena, A. Dna Exitus Plus™ Versus Standard Bleach Solution for the Removal of DNA Contaminants on Work Surfaces and Tools. Invest. Sci. J. 2010, 2, 20-29.
    179. Kohli, R.; Mittal, K. L., Developments in Surface Contamination and Cleaning, Volume 12: Methods for Assessment and Verification of Cleanliness of Surfaces and Characterization of Surface Contaminants. Elsevier Science, 2019.
    180. Hall, L. B.; Hartnett, M. J. Measurement of the Bacterial Contamination on Surfaces in Hospitals. Public Health Rep. 1964, 79, 1021-1024.
    181. Whitfield, W. J.; Beakley, J. W.; Dugan, V. L.; Hughes, L. W.; Morris, M. E.; McDade, J. J. Vacuum Probe: New Approach to the Microbiological Sampling of Surfaces. Appl. Microbiol. 1969, 17, 164-168.
    182. Aycicek, H.; Oguz, U.; Karci, K. Comparison of Results of ATP Bioluminescence and Traditional Hygiene Swabbing Methods for the Determination of Surface Cleanliness at a Hospital Kitchen. Int. J. Hyg. Environ. Health 2006, 209, 203-206.
    183. Mafu, A. A.; Pitre, M.; Sirois, S. Real-Time Pcr as a Tool for Detection of Pathogenic Bacteria on Contaminated Food Contact Surfaces by Using a Single Enrichment Medium. J. Food Prot. 2009, 72, 1310-1314.
    184. Kohli, R.; Mittal, K. L., Developments in Surface Contamination and Cleaning, Volume 4: Detection, Characterization, and Analysis of Contaminants. Elsevier Science, 2011.
    185. Francisco, C. A. I.; Araújo Naves, E. A.; Ferreira, D. C.; Rosário, D. K. A. D.; Cunha, M. F.; Bernardes, P. C. Synergistic Effect of Sodium Hypochlorite and Ultrasound Bath in the Decontamination of Fresh Arugulas. J. Food Saf. 2018, 38, e12391.
    186. Gil, M. I.; Marín, A.; Andujar, S.; Allende, A. Should Chlorate Residues Be of Concern in Fresh-Cut Salads? Food Control 2016, 60, 416-421.
    187. Garrido, Y.; Marín, A.; Tudela, J. A.; Allende, A.; Gil, M. I. Chlorate Uptake During Washing Is Influenced by Product Type and Cut Piece Size, as Well as Washing Time and Wash Water Content. Postharvest Biol. Technol. 2019, 151, 45-52.
    188. Herrero, A. M. Raman Spectroscopy a Promising Technique for Quality Assessment of Meat and Fish: A Review. Food Chem. 2008, 107, 1642-1651.
    189. Kamruzzaman, M.; Makino, Y.; Oshita, S. Non-Invasive Analytical Technology for the Detection of Contamination, Adulteration, and Authenticity of Meat, Poultry, and Fish: A Review. Anal. Chim. Acta 2015, 853, 19-29.
    190. Li, Z.; Suslick, K. S. Portable Optoelectronic Nose for Monitoring Meat Freshness. ACS Sens. 2016, 1, 1330-1335.
    191. Liu, Z.; Zhong, Y.; Hu, Y.; Yuan, L.; Luo, R.; Chen, D.; Wu, M.; Huang, H.; Li, Y. Fluorescence Strategy for Sensitive Detection of Adenosine Triphosphate in Terms of Evaluating Meat Freshness. Food Chem. 2019, 270, 573-578.
    192. Berg, J. M.; Tymoczko, J. L.; Stryer, L., Biochemistry. W. H. Freeman, 2010.
    193. Lozowicka, B. Health Risk for Children and Adults Consuming Apples with Pesticide Residue. Sci. Total Environ. 2015, 502, 184-198.
    194. Stachniuk, A., Lc-Ms/Ms Determination of Pesticide Residues in Fruits and Vegetables. In Bioactive Molecules in Food, J.-M. Mérillon and K. G. Ramawat, Eds. Springer International Publishing, 2019; pp 2137-2161.
    195. Štajnbaher, D.; Zupančič-Kralj, L. Multiresidue Method for Determination of 90 Pesticides in Fresh Fruits and Vegetables Using Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2003, 1015, 185-198.
    196. Caló, E.; Khutoryanskiy, V. V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252-267.
    197. Ullah, F.; Othman, M. B. H.; Javed, F.; Ahmad, Z.; Akil, H. M. Classification, Processing and Application of Hydrogels: A Review. Mater. Sci. Eng. C 2015, 57, 414-433.
    198. Luchini, A.; Geho, D. H.; Bishop, B.; Tran, D.; Xia, C.; Dufour, R. L.; Jones, C. D.; Espina, V.; Patanarut, A.; Zhou, W.; Ross, M. M.; Tessitore, A.; Petricoin, E. F.; Liotta, L. A. Smart Hydrogel Particles:  Biomarker Harvesting:  One-Step Affinity Purification, Size Exclusion, and Protection against Degradation. Nano Lett. 2008, 8, 350-361.
    199. Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105-121.
    200. Walker, N. L.; Dick, J. E. Oxidase-Loaded Hydrogels for Versatile Potentiometric Metabolite Sensing. Biosens. Bioelectron. 2021, 178, 112997.
    201. Brestel, E. P. Co-Oxidation of Luminol by Hypochlorite and Hydrogen Peroxide Implications for Neutrophil Chemiluminescence. Biochem. Biophys. Res. Commun. 1985, 126, 482-488.
    202. Robinson, J. W.; Frame, E. M. S.; Frame, G. M., Instrumental Analytical Chemistry: An Introduction. CRC Press, 2021.
    203. MicroPython Micropython. https://micropython.org/ (accessed July 13, 2021).
    204. MicroPython Micropython Documentation - V1.15, WebREPL - a Prompt over WiFi. https://docs.micropython.org/en/v1.15/esp8266/tutorial/repl.html#webrepl-a-prompt-over-wifi (accessed July 14, 2021).
    205. Urban, P. L. Universal Electronics for Miniature and Automated Chemical Assays. Analyst 2015, 140, 963-975.
    206. Urban, P. L. Prototyping Instruments for the Chemical Laboratory Using Inexpensive Electronic Modules. Angew. Chem. Int. Ed. 2018, 57, 11074-11077.
    207. Prabhu, G. R. D.; Yang, T.-H.; Hsu, C.-Y.; Shih, C.-P.; Chang, C.-M.; Liao, P.-H.; Ni, H.-T.; Urban, P. L. Facilitating Chemical and Biochemical Experiments with Electronic Microcontrollers and Single-Board Computers. Nat. Protoc. 2020, 15, 925-990.
    208. World Health Organization Cleaning and Disinfection of Environmental Surfaces in the Context of COVID-19: Interim Guidance. https://apps.who.int/iris/handle/10665/332096 (accessed July 13, 2021).
    209. Liu, P.-H.; Urban, P. L. Spontaneous Luminescence Color Change in the Firefly Luciferase Assay System. Anal. Biochem. 2017, 539, 54-59.
    210. Moradi, A.; Hosseinkhani, S.; Naderi-Manesh, H.; Sadeghizadeh, M.; Alipour, B. S. Effect of Charge Distribution in a Flexible Loop on the Bioluminescence Color of Firefly Luciferases. Biochemistry 2009, 48, 575-582.
    211. Bakke, M.; Suzuki, S. Development of a Novel Hygiene Monitoring System Based on the Detection of Total Adenylate (ATP+ADP+AMP). J. Food Prot. 2018, 81, 729-737.
    212. Nakatani, Y.; Fujita, T.; Sawa, S.; Otani, T.; Hori, Y.; Takagahara, I. Changes in ATP-Related Compounds of Beef and Rabbit Muscles and a New Index of Freshness of Muscle. Agric. Biol. Chem. 1986, 50, 1751-1856.
    213. Gil, L.; Barat, J. M.; Baigts, D.; Martínez-Máñez, R.; Soto, J.; Garcia-Breijo, E.; Aristoy, M. C.; Toldrá, F.; Llobet, E. Monitoring of Physical-Chemical and Microbiological Changes in Fresh Pork Meat under Cold Storage by Means of a Potentiometric Electronic Tongue. Food Chem. 2011, 126, 1261-1268.
    214. Eom, K.-H.; Hyun, K.-H.; Lin, S.; Kim, J.-W. The Meat Freshness Monitoring System Using the Smart Rfid Tag. Int. J. Distrib. Sens. Netw. 2014, 10, 591812.
    215. Kuswandi, B.; Nurfawaidi, A. On-Package Dual Sensors Label Based on Ph Indicators for Real-Time Monitoring of Beef Freshness. Food Control 2017, 82, 91-100.
    216. Chayavanich, K.; Thiraphibundet, P.; Imyim, A. Biocompatible Film Sensors Containing Red Radish Extract for Meat Spoilage Observation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 226, 117601.
    217. Ballester-Caudet, A.; Hakobyan, L.; Moliner-Martinez, Y.; Molins-Legua, C.; Campíns-Falcó, P. Ionic-Liquid Doped Polymeric Composite as Passive Colorimetric Sensor for Meat Freshness as a Use Case. Talanta 2021, 223, 121778.
    218. Boehme, C.; Bieber, F.; Linnemann, J.; Breitling, R.; Lorkowski, S.; Reissmann, S. Chemical and Enzymatic Characterization of Recombinant Rabbit Muscle Pyruvate Kinase. Biol. Chem. 2013, 394, 695-701.
    219. Montali, L.; Calabretta, M. M.; Lopreside, A.; D'Elia, M.; Guardigli, M.; Michelini, E. Multienzyme Chemiluminescent Foldable Biosensor for on-Site Detection of Acetylcholinesterase Inhibitors. Biosens. Bioelectron. 2020, 162, 112232.
    220. Sinha, S. N.; Vasudev, K.; Vishnu Vardhana Rao, M. Quantification of Organophosphate Insecticides and Herbicides in Vegetable Samples Using the “Quick Easy Cheap Effective Rugged and Safe” (QUECHERS) Method and a High-Performance Liquid Chromatography–Electrospray Ionisation–Mass Spectrometry (LC–MS/MS) Technique. Food Chem. 2012, 132, 1574-1584.
    221. Lang, Q.; Han, L.; Hou, C.; Wang, F.; Liu, A. A Sensitive Acetylcholinesterase Biosensor Based on Gold Nanorods Modified Electrode for Detection of Organophosphate Pesticide. Talanta 2016, 156-157, 34-41.
    222. Facure, M. H. M.; Mercante, L. A.; Mattoso, L. H. C.; Correa, D. S. Detection of Trace Levels of Organophosphate Pesticides Using an Electronic Tongue Based on Graphene Hybrid Nanocomposites. Talanta 2017, 167, 59-66.
    223. Li, H.; Yan, X.; Lu, G.; Su, X. Carbon Dot-Based Bioplatform for Dual Colorimetric and Fluorometric Sensing of Organophosphate Pesticides. Sens. Actuators B-Chem. 2018, 260, 563-570.
    224. Qi, Y.; Xiu, F.-R.; Zheng, M.; Li, B. A Simple and Rapid Chemiluminescence Aptasensor for Acetamiprid in Contaminated Samples: Sensitivity, Selectivity and Mechanism. Biosens. Bioelectron. 2016, 83, 243-249.
    225. Ley, S. V.; Fitzpatrick, D. E.; Ingham R. J.; Nikbin, N. The Internet of Chemical Things. Beilstein Mag. 2015, 1, 2.
    226. Prabhu, G. R. D.; Witek, H. A.; Urban, P. L. Telechemistry: Monitoring Chemical Reactions Via the Cloud Using the Particle Photon Wi-Fi Module. React. Chem. Eng. 2019, 4, 1616-1622.

    QR CODE