簡易檢索 / 詳目顯示

研究生: 胡家榮
Hu, Chia-Jung
論文名稱: Power generation with ZnO coated carbon nanotube arrays
氧化鋅覆合奈米碳管陣列的發電現象
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 42
中文關鍵詞: 奈米碳管陣列氧化鋅壓電元件
外文關鍵詞: carbon nanotube arrays, ZnO, piezoelectric generator
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Mechanical energy is converted into electricity by deforming multi-walled carbon nanotube arrays coated with ZnO nanocrystals by atomic layer deposition. The presented generator prototypes displayed exceptional output up to 1.62 V and 1.03 μA, illuminating a new path toward piezoelectric micro generator, or even self-powering micro system.


    表面以原子層沈積法鍍上氧化鋅奈米晶粒的多壁奈米碳管陣列可將外加力學能轉換成電能。據此設計的兩種發電器原型輸出達1.62伏特與1.03毫安培,具有發展為微型發電元件,甚或微型自驅動系統的潛力。

    DEDICATION AND ACKNOWLEDGMENT.....i ABSTRACT.....ii INTRODUCTION.....1 LITERATURE REVIEW.....3 I. Carbon nanotube.....3 II. Piezoelectricity and ZnO.....7 III. Nanogenerators based on ZnO nanowires.....9 EXPERIMENTAL.....18 RESULTS AND DISCUSSION.....22 CONCLUSION.....38 REFERENCES.....39

    1. Priya S, Inman DJ. Energy harvesting technologies. New York ; London: Springer; 2009. xx, 517 p. p.
    2. Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006;312(5771):242-246.
    3. Wang XD, Song JH, Liu J, Wang ZL. Direct-current nanogenerator driven by ultrasonic waves. Science 2007;316(5821):102-105.
    4. Qin Y, Wang XD, Wang ZL. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008;451(7180):809-813.
    5. Yang RS, Qin Y, Dai LM, Wang ZL. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology 2009;4(1):34-39.
    6. Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL. Self-powered nanowire devices. Nature Nanotechnology 2010;advance online publication.
    7. Qi Y, Jafferis NT, Lyons K, Lee CM, Ahmad H, McAlpine MC. Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion. Nano Letters 2010;10(2):524-528.
    8. Roundy S, Wright PK, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 2003;26(11):1131-1144.
    9. Kim HW, Batra A, Priya S, Uchino K, Markley D, Newnham RE, Hofmann HF. Energy harvesting using a piezoelectric "cymbal" transducer in dynamic environment. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 2004;43(9A):6178-6183.
    10. Shen D, Choe SY, Kim DJ. Analysis of piezoelectric materials for energy harvesting devices under high-g vibrations. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2007;46(10A):6755-6760.
    11. Cao AY, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM. Super-compressible foamlike carbon nanotube films. Science 2005;310(5752):1307-1310.
    12. Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. Journal of Chemical Physics 1996;104(5):2089-2092.
    13. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature 1997;389(6651):582-584.
    14. Monthioux M, Kuznetsov VL. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006;44(9):1621-1623.
    15. Ebbesen TW. Carbon nanotubes : preparation and properties. Boca Raton: CRC Press; 1997. 296 p. p.
    16. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE. C-60 - Buckminsterfullerene. Nature 1985;318(6042):162-163.
    17. Iijima S. Helical Microtubules of Graphitic Carbon. Nature 1991;354(6348):56-58.
    18. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic-Structure of Chiral Graphene Tubules. Applied Physics Letters 1992;60(18):2204-2206.
    19. Brcic M, Canadija M, Brnic J, Lanc D, Krscanski S, Vukelic G. FE modelling of multi-walled carbon nanotubes. Estonian Journal of Engineering 2009;15(2):10.
    20. White CT, Robertson DH, Mintmire JW. Helical and Rotational Symmetries of Nanoscale Graphitic Tubules. Physical Review B 1993;47(9):5485-5488.
    21. Hamada N, Sawada S, Oshiyama A. New One-Dimensional Conductors - Graphitic Microtubules. Physical Review Letters 1992;68(10):1579-1581.
    22. Dresselhaus MS, Dresselhaus G, Eklund PC. Science of fullerenes and carbon nanotubes. San Diego: Academic Press; 1996. xviii, 965 p. p.
    23. Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K and others. Controlled production of aligned-nanotube bundles. Nature 1997;388(6637):52-55.
    24. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998;282(5391):1105-1107.
    25. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G. Large-scale synthesis of aligned carbon nanotubes. Science 1996;274(5293):1701-1703.
    26. Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J. Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chemical Physics Letters 1999;303(5-6):467-474.
    27. Buchanan RC. Ceramic materials for electronics. New York: Marcel Dekker; 2004. x, 676 p. p.
    28. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 2005;98(4):1301
    29. Kittel C. Introduction to solid state physics. Hoboken, NJ: Wiley; 2005. xix, 680 p. p.
    30. Wang ZL. Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics. Advanced Functional Materials 2008;18(22):3553-3567.
    31. Solymar L, Walsh D. Electrical properties of materials. Oxford ; New York: Oxford University Press; 2004. xiv, 402 p. p.
    32. Wang XD, Liu J, Song JH, Wang ZL. Integrated nanogenerators in biofluid. Nano Letters 2007;7(8):2475-2479.
    33. Andrews R, Jacques D, Qian DL, Rantell T. Multiwall carbon nanotubes: Synthesis and application. Accounts of Chemical Research 2002;35(12):1008-1017.
    34. Fang WL, Chu HY, Hsu WK, Cheng TW, Tai NH. Polymer-reinforced, aligned multiwalled carbon nanotube composites for microelectromechanical systems applications. Advanced Materials 2005;17(24):2987-2992.
    35. Hasegawa S, Nishida S, Yamashita T, Asahi H. Field electron emission from polycrystalline GaN nanorods. Journal of Ceramic Processing Research 2005;6(3):245-249.
    36. Su WS, Leung TC, Chan CT. Work function of single-walled and multiwalled carbon nanotubes: First-principles study. Physical Review B 2007;76(23):235413(8)
    37. Shiraishi M, Ata M. Work function of carbon nanotubes. Carbon 2001;39(12):1913-1917.
    38. Gao RP, Pan ZW, Wang ZL. Work function at the tips of multiwalled carbon nanotubes. Applied Physics Letters 2001;78(12):1757-1759.
    39. Erol A, Okur S, Comba B, Mermer O, Arikan MC. Humidity sensing properties of ZnO nanoparticles synthesized by sol-gel process. Sensors and Actuators B-Chemical 2010;145(1):174-180.
    40. Lin YH. Mechanical properties of carbon nanotube/metal oxide composite [dissertation]. Hsinchu (Taiwan): National Tsing Hua University. Forthcoming.
    41. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996;381(6584):678-680.
    42. Mayo MJ, Siegel RW, Liao YX, Nix WD. Nanoindentation of Nanocrystalline Zno. Journal of Materials Research 1992;7(4):973-979.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE