研究生: |
盧旻澤 Lu, Min-Ze |
---|---|
論文名稱: |
具可重組能源支撐機構以開關式磁阻發電機為主之直流微電網 SWITCHED-RELUCTANCE GENERATOR BASED DC MICROGRID WITH RECONFIGURABLE ENERGY SUPPORT MECHANISM |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
朱家齊
Chu, Chia-Chi 鐘太郎 Jong, Tai-Lang 徐國鎧 Shyu, Kuo-Kai 劉添華 Liu, Tian-Hua 陳盛基 Chen, Seng-Chi |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 194 |
中文關鍵詞: | 開關式磁阻電機 、風力發電機 、太陽光伏 、直流微電網 、超電容 、電池 、飛輪 、單相三線變頻器 、插入式機構 、切換式整流器 、可重組架構 、換相移位 、位置估測 、電壓控制 、電流控制 、強健控制 、前饋控制 、車輛至微電網 、微電網至車輛 |
外文關鍵詞: | Switched-reluctance machine, wind generator, photovoltaic, DC microgrid, supercapacitor, battery, flywheel, 1P3W inverter, plug-in mechanism, switch-mode rectifier, reconfigurable schematic, commutation shift, position estimation, voltage control, current control, robust control, feedforward control, vehicle-to-microgrid, microgrid-to-vehicle |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一具可重組能源支撐機構以風力開關式磁阻發電機為主之直流微電網。首先建立一變頻感應馬達驅動之開關式磁阻發電機及其後接非對稱橋式轉換器,採磁滯電流控制以具快速電流追控性能,且經量化設計之電壓控制器,獲得調節良好之48伏直流標稱輸出電壓。為減少開關式磁阻發電機之反電動勢影響,提出考慮最大可操作功率之換相移位策略,可正常操作於廣速度及負載範圍。另外,再提出一些增能探究,包含:(i) 換相移位對直流鏈電壓漣波之影響,可間接降低發電機之產生轉矩漣波;(ii) 發電機之轉子位置估測,包含換相時刻及窗角設定;以及(iii) 單一相斷路之發電容錯能力。
為建立微電網共同直流匯流排電壓(400V),建構一交錯式直流-直流昇壓轉換器。除良好設計之電流及電壓回授控制器外,加入一輸入電壓前饋控制器,於風力發電機輸出電壓變動下,增快電壓之調節響應速度。為增進微電網之供應可靠性,安裝一包含超電容、電池及開關式磁阻馬達驅動飛輪之混合儲能系統。並裝配一基於維也納切換式整流器之插入式能源支撐機構,以接收可取得之直流、單相及三相交流電源。當風能不足時,微電網可藉此安排,在直流匯流排獲得能源支援。
接著,提出一可重組之交錯式昇壓介面轉換器。藉於不同並接轉換器數量進行之穩態特性量測,建立一依速度切換並接數量之交錯式昇壓轉換器,可在廣速度範圍下保有高能源轉換效率。於低風速,甚至風渦輪機停機時,交錯式轉換器可重組,以擷取輸入外部電源。此外,為拓展所建直流微電網之能源輸入多樣性,再經所開發之交錯式轉換器建立太陽光伏系統。在微電網之測試負載安排上,採用單相三線負載變頻器模擬家用負載。另外,本論文亦從事所建微電網與電動車開關式磁阻馬達驅動系統之互聯雙向操作。所有所建電力電路均以模擬及量測結果驗證評估之。
This dissertation develops a wind switched-reluctance generator (SRG) based direct current (DC) microgrid with reconfigurable energy support mechanism. An inverter-fed induction motor (IM) driven SRG with followed asymmetric bridge converter is first established. The hysteresis current control is adopted to possess fast current tracking performance, while the voltage controller is quantitatively designed for obtaining well-regulated nominal DC 48V output voltage. To reduce the effects from back electromotive force (back-EMF) of the SRG, the commutation shifting approach considering maximum operable power is employed, which makes the wind SRG be normally operated over wide speed and load ranges. In addition, some other performance enhancements to the SRG being made include: (i) influence of commutation shift to the DC-link voltage ripple, which may indirectly reduce developed torque ripple of the SRG; (ii) algorithm of position estimation to the SRG including commutation instant and dwell angle settings; and (iii) fault-tolerant capability as one phase is disconnected.
To establish the microgrid common DC-bus voltage (400V), an interleaved DC-DC boost converter is constructed. In addition to the well-designed current and voltage feedback controllers, an input voltage feedforward controller is added to yield fast voltage regulation response against the fluctuated SRG output voltage. To enhance the power supplying reliability, the hybrid energy storage system (ESS) including supercapacitor, battery and switched-reluctance motor (SRM)-driving flywheel is installed. And a Vienna switch-mode rectifier (SMR) based plug-in energy support mechanism is equipped to accept the available DC, single-phase and three-phase alternating current (AC) sources. As the wind energy is insufficient, the microgrid can be supported energy at its DC bus from these arrangements.
Next, a reconfigurable interleaved boost interface converter is proposed. Through the measurement of steady-state characteristics under different converter cell numbers, the speed-dependent interleaved boost converter is established to preserve high energy conversion efficiency over wide speed range. Under lower wind speed, even the wind turbine is halted, the interleaved converter can be reconfigured to extract power from external sources. To expand the diversity of the established DC microgrid, the photovoltaic (PV) system is further established using the developed interleaved converter. As to the test load arrangement, the single-phase three-wire (1P3W) load inverter is adopted to emulate household appliances. In addition, an electric vehicle (EV) SRM drive is cooperated to the DC microgrid to achieve the vehicle-to-microgrid (V2M) and microgrid-to-vehicle (M2V) operations. All the established power stages are evaluated via the given simulated and measured results.
REFERENCES
A. Microgrids
[1] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214–2223, May 2013.
[2] S. Mirsaeidi, X. Dong, S. Shi, and D. Tzelepis, “Challenges, advances and future directions in protection of hybrid AC/DC microgrids,” IET Renew. Power Gener., vol. 11, no. 12, pp. 1495–1502, 2017.
[3] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang, and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. 12th Int. Conf. Optim. Elect. Electron. Equip., 2010, pp. 1369–1380.
[4] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator-based common DC microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512–2527, Sep. 2011.
[5] M. Patterson, N. F. Macia, and A. M. Kannan, “Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 359–366, Mar. 2015.
[6] P. A. Madduri, J. Poon, J. Rosa, M. Podolsky, E. A. Brewer, and S. R. Sanders, “Scalable DC microgrids for rural electrification in emerging regions,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 4, pp. 1195–1205, Dec. 2016.
[7] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567–575, Jan./Feb. 2017.
[8] A. Merabet, K. T. Ahmed, H. Ibrahim, R. Beguenane, and A. M. Y. Ghias, “Energy management and control system for laboratory scale microgrid based wind-PV-battery,” IEEE Trans. Sustain. Energy, vol.8, no. 1, pp. 145–154, Jan. 2017.
[9] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-Part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.
[10] Z. Jin, G. Sulligoi, R. Cuzner, L. Meng, J. C. Vasquez and J. M. Guerrero, “Next-generation shipboard DC power system: introduction smart grid and dc microgrid technologies into maritime electrical networks,” IEEE Electrification Magazine, vol. 4, no. 2, pp. 45-57, June 2016.
[11] M. Abul Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid- system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157- 171, Mar. 2018.
[12] A. Matsumoto, A. Fukui, T. Takeda, and M. Yamasaki, “Development of 400-Vdc output rectifier for 400-Vdc power distribution system in telecom sites and data centers,” in Proc. 2010 IEEE INTELEC, Orlando, FL, USA, June 2010.
[13] A. D. Martin, J. M. Cano, J. F. A. Silva, and J. R. Vázquez, “Backstepping control of smart grid-connected distributed photovoltaic power supplies for telecom equipment,” IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1496-1504, Dec. 2015.
[14] K. Hirose, “DC microgrid for telecommunications service and related application,” in Proc. 2018 IPEC-Niigata 2018-ECCE Asia, Niigata, Japan, May 2018, pp. 593-597.
[15] S. Anand and B. G. Fernandes, “Optimal voltage level for DC microgrids,” in Proc. IEEE IECON, 2010, pp. 3034-3039.
[16] G. AlLee and W. Tschudi, “Edison redux: 380 Vdc brings reliability and efficiency to sustainable data centers,” in IEEE Power and Energy Magazine, vol. 10, no. 6, pp. 50-59, Nov.-Dec. 2012.
[17] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
[18] J. Y. Lee, Y. P. Cho, and J. H. Jung, “Single-stage voltage balancer with high-frequency isolation for bipolar LVDC distribution system,” IEEE Trans. Ind. Electron., vol. 67, no. 5, pp. 3596-3606, May 2020.
[19] T. Dragičević, X. N. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids-Part I: a review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7 ,, pp. 4876-4891, July 2016.
[20] X. N. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, “An improved droop control method for DC microgrids based on low bandwidth communication with DC bust voltage restoration and enhanced current sharing accuracy,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1800- 1812, Apr. 2014.
[21] T. Dragičević, J. M. Guerrero, J. C. Vasquez, and D. Škrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, Feb. 2014.
[22] A. G. Tsikalakis and N. D. Hatziargyriou, “Centralized control for optimizing microgrids operation,” in Proc. IEEE PESGM, July 2011, pp. 1-8.
[23] P. Sanjeev, N. P. Padhy, and P. Agarwal, “Peak energy management using renewable integrated DC microgrid,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4906-4917, Sep. 2018.
[24] Y. S. Roh, Y. J. Moon, J. Park, M. G. Jeong, and C. Yoo, “A multiphase synchronous buck converter with a fully integrated current balancing scheme,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5159-5169, Sep. 2015.
[25] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control system,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963-1976, Dec. 2012.
[26] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, “Distributed secondary control for islanded microgrids- a novel approach,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 1018-1031, Feb. 2014.
[27] S. Moayedi and A. Davoudi, “Distributed tertiary control of DC microgrid clusters,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1717-1733, Feb. 2016.
[28] M. Kwon and S. Choi, “Control scheme for autonomous and smooth mode switching of bidirectional DC-DC converters in a DC microgrid,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 7094-7104, Aug. 2018.
B. Switched-reluctance Machine
[29] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc. 2002.
[30] P. C. Sen, Principle of Electric Machines and Power Electronics, 3rd ed. Canada: Wiley John & Sons, Inc., 2014.
[31] T. J. E. Miller, Switched reluctance motors and their control, Oxford, Clarendon Press, 1993.
[32] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[33] J. W. Ahn and G. F. Lukman, “Switched reluctance motor: research trends and overview,” in CES Transaction on Electrical Machines and Systems, vol. 2, no. 4, pp. 339-347, Dec. 2018.
[34] C. Y. Ho, J. C. Wang, K. W. Hu, and C. M. Liaw, “Development and operation control of a switched-reluctance motor driven flywheel,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 526-537, Jan. 2019.
[35] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303- 2309, 2012.
[36] K. Kiyota, T. Kakishima, A. Chiba, and M. A. Rahman, “Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 154-162, Jan./Feb. 2016.
[37] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, Mar. 2017.
[38] C. A. Ferreira, S. R. Jones, W. S. Heglund, and W. D. Jones, “Detailed design of a 30-kW switched reluctance starter/generator system for a gas turbine engine application,” IEEE Trans. Ind. Appl., vol. 31, no. 3, pp. 553-561, May/June 1995.
[39] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high- speed 45-kW switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, Feb. 2017.
[40] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[41] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Design considerations for switched reluctance machines with a higher number of rotor poles,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3745-3756, 2012.
[42] S. E. Schulz and K. M. Rahman, “High performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[43] R. Gobbi and K. Ramar, “Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors,” IET Proc. Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[44] Y. Kuwahara, H. Ono, T. Kosaka, N. Matsui, and H. Shimada, “Precise pulsewise current drive of SRM under PWM control,” in Proc. IEEE PEDS, 2013, pp. 1049-1054.
[45] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-3726, 2014.
[46] H. Hannoun, M. Hilairet, and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
[47] J. J. Gribble, P. C. Kjaer, and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Elect. Power Appl., vol. 146, no. 1, pp. 2-10, 1999.
[48] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[49] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
[50] N. Kurihara, J. Bayless, H. Sugimoto, and A. Chiba, “Noise reduction of switched reluctance motor with high number of poles by novel simplified current waveform at low speed and low torque region,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3013-3021, July/Aug. 2016.
[51] J. Furqani, M. Kawa, K. Kiyota, and A. Chiba, “Current waveform for noise reduction of a switched reluctance motor under magnetically saturated condition,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 213-222, Jan./Feb. 2018.
[52] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, Sep. 2009.
[53] N. Schofield and S. Long, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
[54] K. Urase, N. Yabu, K. Kiyota, H. Sygimoto, A. Chiba, M. Takemoto, S. Ogasawara, and N. Hoshi, “Energy efficiency of SR and IPM generators for hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 2874-2883, July/Aug. 2015.
[55] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, Dec. 2005.
[56] T. A. D. S. Barros, P. J. D. S. Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, Nov. 2017.
[57] P. J. D. S. Neto, T. A. D. S. Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind systems,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, Mar. 2018.
[58] P. N. Materu and R. Krishnan, “Estimation of switched reluctance motor losses,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 668-679, May/June 1992.
[59] C. Mademlis and I. Kioskeridis, “Optimizing performance in current-controlled switched reluctance generators,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 556-565, Sep. 2005.
[60] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1. Feb. 2002.
[61] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, Jan. 2008.
[62] I. Kioskeridis and C. Mademlis, “Optimal efficiency control of switched reluctance generators,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1062-1072. July 2006.
[63] W. Fernando, M. Barnes, and O. Marjanovic, “Excitation control and voltage regulation of switched reluctance generators above base speed operation,” in Proc. IEEE VPPC, 2011, pp. 1-6.
[64] V. Nasirian, S. Kaboli, and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, May/June 2013.
[65] C. Sikder, I. Husain, and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, Jan./ Feb. 2014.
[66] I. Husain, A. Radun, and J. Nairus, “Fault analysis and excitation requirements for switched reluctance generator,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 67-72, Mar. 2002.
[67] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[68] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[69] A. K. Jain and N. Mohan, “SRM power converter for operation with high de-magnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1224-1231, 2005.
[70] S. Mir, I. Husain, and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
[71] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[72] A. Takahashi, H. Goto, K. N akamura, T. Watanabe, and O. Ichinokura, “Characteristics of 8/6 switched reluctance generator excited by suppression resistor converter,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3458-3460, Oct. 2006.
[73] F. Faradjizadeh, R. Tavakoli, and E. S. Afjei, “Accumulator capacitor converter for a switched reluctance generator,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 501-512, Jan. 2018.
[74] R. Cardenas, W. F. Ray, and G. M. Asher, “Switched reluctance generators for wind energy applications,” in Proc. Power Electronics Specialist Conference, 1995, pp. 559-564, vol. 1.
[75] Y. H. Hu, C. Gan, W. P. Cao, C. S. Li, and S. Finney, “Split converter-fed SRM drive for flexible charging in EV /HEV applications,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6085-6095, Oct. 2015.
C. Sensorless Control of Switched-reluctance Machine
[76] M. Ehsami and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron.,vol. 49, no. 1, pp. 40-47, Feb. 2002.
[77] B. Fahimi, A. Emadim, and R. B. Sepe, Jr, “Four-quadrant position sensorless control in SRM drives over the entire speed range,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 154-163, Jan. 2005.
[78] D. Panda and V. Ramanarayanan, “Reduced acoustic noise variable DC-bus-based sensorless switched reluctance motor drive for HVAC applications,” Trans. Trans. Ind. Electron., vol. 54, no. 4, pp. 2065-2078, Aug. 2007.
[79] W. Ding and K. Song, “Position sensorless control of switched reluctance motors using reference and virtual flux linkage with one-phase current sensor in medium and high speed,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 2595-2606, Apr. 2020.
[80] G. Gallegos-López, P. C. Kjaer, and T. J. E. Miller, “A new sensorless method for switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 832-840, July/Aug. 1998.
[81] C. J. Bateman, B. C. Mecrow, A. C. Clothier, P. P. Acarnley, and N. D. Tuftnell, “Sensorless operation of an ultra-high-speed switched reluctance machine,” IEEE Trans. Ind. Appl., vol. 46, no. 6, pp. 2329-2337, Nov./Dec. 2010.
[82] C. Gan, J. H. Wu, Y. H. Hu, S. Y. Yang, W. P. Cao, and J. L. Kirtley, “Online sensorless position estimation for switched reluctance motors using one current sensor,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7248-7263, Dec. 2015.
[83] J. H. Kim and R. Y. Kim, “Sensorless direct torque control using the inductance inflection point for a switched reluctance motor,” IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9336- 9345, Dec. 2018.
[84] E. Echenique, J. Dixon, R. Cárdenas, and R. Peña, “Sensorless control for a switched reluctance wind generator, based on current slopes and neural networks,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 817-825, Mar. 2009.
[85] H. J. Guo, M. Takahashi, and O. Ichinokura, “A new sensorless drive method of switched reluctance motors based on motor’s magnetic characteristics,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2831-2833, July 2001.
[86] G. Pasquesoone, R. Mikail, I. Husain, “Position estimation at starting and lower speed in three-phase switched reluctance machines using pulse injection and two thresholds,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1724-1731, July/ Aug. 2011.
[87] W. Wang and B. Fahimi, “Fault resilient strategies for position sensorless methods of switched reluctance motors under single and multiphase fault,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 190-200, June 2014.
[88] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched- reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781- 3793, July 2015.
[89] S. A. Hossain, I. Husain, H. Klode, B. Lequesne, A. M. Omekanda, and S. Gopalakrishnan, “Four-quadrant and zero-speed sensorless control of a switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1343-1349, Sep./Oct. 2003.
[90] A. Khalil, I. Husain, S. A. Hossain, S. Gopalakrishnan, A. M. Omekanda, B. Lequesne, and H. Klode, “A hybrid sensorless SRM drive with eight- and six-switch converter topologies,” IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1647-1655, Nov./Dec. 2005.
[91] A. Khalil, S. Underwood, I. Husain, H. Klode, B. Lequesne, S. Gopalakrishnan, and A. M. Omekanda, “Four-quadrant pulse injection and sliding-mode-observer-based sensorless operation of a switched reluctance machine over entire speed range including zero speed,” IEEE Trans. Ind. Appl., vol. 43, no. 3, May/June 2007.
[92] K. R. Geldhof, A. P. M. Van den Bossche, and J. A. Melkebeek, “Rotor-position estimation of switched reluctance motors based on damped voltage resonance,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2954-2960, Sep. 2010.
[93] T. Kamiyama and T. Yoshida, “A new dc-bus-voltage-robust sensorless control for switched reluctance motors,” IEEJ Trans. Ind. Appl., vol. 137, Iss. 3, pp. 192-198, 2017.
D. Interface Converter, Plug-and-play Strategy and Reconfigurable Schematic
[94] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., New Jersey: Wiley, 2003.
[95] F. Blaabjerg, F. Iov, R. Teodorescu, and Z. Chen, “Power electronics in renewable energy systems,” in Proc. IEEE EPE-PEMC, 2006, pp. 1-17.
[96] P. Biczel, “Power electronic converters in DC microgrid,” in Proc. IEEE Compat. Power Electron., 2007, pp. 1-6.
[97] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, June 2009.
[98] T. D. Mai, G. Van denBroeck, A. Pevere, and J. Driesen, “Power electronics for potential distribution DC power evolution: a review,” in Proc. IEEE Int. Energy Conf., 2016, pp. 1-6.
[99] D. Kumar, F. Zare, and A. Ghosh, “DC microgrid technology: system architectures AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects,” IEEE Access, vol. 5, pp. 12230-12256, June 2017.
[100] Q. Liu, T. Caldognetto, and S. Buso, “Flexible control of interlinking converters for DC microgrids coupled to smart AC power system,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3477-3485, May 2019.
[101] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, Dec. 2017.
[102] J. Wei and F. C. Lee, “Two-stage voltage regulator for laptop computer CPUs and the corresponding advanced control schemes to improve light-load performance,” in Proc. IEEE Appl. Power Electron. Conf. Exp., 2004, pp. 1294-1300.
[103] K. W. Hu, J. C. Wang, T. S. Lin, and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 273-284, Mar. 2015.
[104] T. Lodh, N. Pragallapati, and V. Agarwal, “Novel control scheme for an interleaved flyback converter based solar PV microinverter to achieve high efficiency,” IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3473-3482, July/Aug. 2018.
[105] A. Alzahrani, M. Ferdowsi, and P. Shamsi, “A family of scalable non-isolated interleaved DC-DC boost converters with voltage multiplier cells,” IEEE Access, vol. 7, pp. 11701-11721, Jan. 2019.
[106] A. Shahin, M. Hinaje, J. P. Martin, S. Pierfederici, S. Raël, and B. Davat, “High voltage ratio DC-DC converter for fuel-cell applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3944-3955, Dec. 2010.
[107] V. Taramasu and B. Wu, “Predictive control of a three-level boost converter and an NPC inverter for high-power PMSG-based medium voltage wind energy conversion systems,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5308-5322, Oct. 2014.
[108] S. Dusmez, A. Hasanadeh, and A. Khaligh, “Comparative analysis of bidirectional three- level DC-DC converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3305-3315, May 2015.
[109] A. Ganjavi, H. Ghoreishy, and A. A. Ahmad, “A novel single-input dual-out three- level DC- DC converter,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8101-8111, Dec. 2018.
[110] S. Rezayi, H. Iman-Eini, M. Hamzeh, S. Bacha, and S. Farzamkia, “Dual-output DC/DC boost converter for bipolar DC microgrids,” IET Renew. Power Gener., 2019, vol. 13 Iss. 8, pp. 1402-1410.
[111] A. A. Elserougi, A. M. Massoud, and S. Ahmed, “A unipolar/bipolar high-voltage pulse generator based on positive and negative buck-boost DC-DC converters operating in discontinuous conduction mode,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5368-5379, Jul 2017.
[112] Prajof P. and V. Agarwal, “Novel boost-SEPIC type interleaved DC-DC converter for low- voltage bipolar DC microgrid-tied solar PV applications,” in Proc. IEEE 42nd PVSC, 2015, pp. 1-6.
[113] S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “A plug and play operational approach for implementation of an autonomous-micro-grid system,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 615-629, Aug. 2012.
[114] F. Cingoz, A. Elrayyah, and Y. Sozer, “Plug-and-play nonlinear droop construction scheme to optimize islanded microgrid operations,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2743-2756, Apr. 2017.
[115] P. J. Chauhan, B. D. Reddy, S. Bhandari, and S. K. Panda, “Battery energy storage for seamless transitions of wind generator in standalone microgrid,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 69-77, Jan./Feb. 2019.
[116] A. Ghazanfari, M. Hamzeh, and Y. A. I. Mohamed, “A resilient plug-and-play decentralized control for DC parking lots,” IEEE Trans. Smart Grid, vol. 9, no. 3, pp. 1930-1942, May 2018.
[117] R. Han, M. Tucci, A. Martinelli, J. M. Guerrero, and G. Ferrari-Trecate, “Stability analysis of primary plug-and-play and secondary leader-based controllers for DC microgrid clusters,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 1780-1800, May 2019.
[118] M. Kamel, R. A. Zane, and D. Maksimović, “Voltage sharing with series output connected battery modules in a plug-and-play DC microgrid,” IEEE Trans. Power Electron., vol. 36, no. 11, pp. 13118-13127, Nov. 2021.
[119] S. Li, A. T. L. Lee, S. C. Tan, and S. Y. R. Hui, “Plug-and-play voltage ripple mitigator for DC links in hybrid AC-DC power grids with local bus-voltage control,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 687-698, Jan. 2018.
[120] H. Tao, J. L. Duarte, and M. A. M. Hendrix, “Multiport converters for hybrid power sources,” in Proc. IEEE Power Electronics Specialists Conference, 2008, pp. 3412-3418.
[121] S. R. Meher, S. Banejee, B. T. Vankayalapati, and R. K. Singh, “A reconfigurable on-board power converter for electric vehicle with reduced switch count,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 3760-3772, Apr. 2020.
[122] M. Momayyezan, B. Hredzak, and V. G. Agelidis, “Integrated reconfigurable converter topology for high-voltage battery systems,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 1968-1979, Mar. 2016.
[123] J. Sakly, A. B. Abdelghani, I. Slama-Belkhodja, and H. Sammoud, “Reconfigurable DC/DC converter for efficiency and reliability optimization,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 1216-1224, Sep. 2017.
[124] O. Salari, K. H. Zaad, A. Bakhshai, and P. Jain, “Reconfigurable hybrid energy storage system for an electric vehicle DC-AC Inverter,” IEEE Trans. Power Electon., vol. 35, no. 12, pp. 12846-12860, Dec. 2020.
[125] Y. D. Lee, G. W. Moon, J. Baek, and C. E. Kim, “A reconfigurable totem-pole PFC rectifier with light load optimization control strategy and soft-switching capability,” IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4371-4382, Apr. 2021.
[126] H. K. Jahan, F. Panahandeh, and M. Abapour, “Reconfigurable multilevel inverter with fault-tolerant ability,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7880-7893, Sep. 2018.
[127] J. L. Soon, D. D. Lu, J. C. Peng, and W. Xiao, “Reconfigurable nonisolated DC-DC converter with fault-tolerant capability,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 8934-8943, Sep. 2020.
[128] L. Molgonyana, K. Smith, and S. Galloway, “Reconfigurable low voltage direct current charging network for plug-in electric vehicles,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5458-5467, Sep. 2019.
E. Switch-mode Rectifiers
[129] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
[130] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, May 2003.
[131] L. Huber, Y. Jang, and M. M Jovanović, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 1381-1390, May 2008.
[132] F. Chen, R. Burgos, D. Boroyevich, “Efficiency comparison of a single-phase grid-interface bidirectional AC/DC converter for DC distribution systems,” in Proc. IEEE ECCE, 2015, pp. 6261-6268.
[133] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833-1843, July/Aug. 2011.
[134] P. Kong, S. Wang, and F. C. Lee, “Common mode EMI noise suppression in bridgeless boost PFC converter,” in Proc. IEEE APEC, 2007, pp. 929-935.
[135] L. Xue, Z. Shen, D. Boroyevich, and P. Mattavelli, “GaN-based high frequency totem-pole bridgeless PFC design with digital implementation,” in Proc. IEEE APEC, 2015, pp. 759- 766.
[136] M. H. Park, J. Baek, Y. H. Jeong, and G. W. Moon, “An interleaved totem-pole bridgeless boost PFC converter with soft-switching capability adopting phase-shifting control,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10610-10618, Nov. 2019.
[137] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, Mar. 2016.
[138] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, June 2004.
[139] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems- part I,” IEEE Trans. Power Electron., vol. 1, no. 1, pp. 176-198, Jan. 2013.
[140] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, Feb. 2014.
[141] K. Yao, Q. Meng, Y. Bo, and W. Hu, “Three-phase single-switch DCM boost PFC converter with optimum utilization control of switching cycles,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 60-70, Jan. 2016.
[142] S. Gangavarapu and A. K. Rathore, “Three-phase buck-boost derived PFC converter for more electric aircraft,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6264-6275, July 2019.
[143] S. Gangavarapu and A. K. Rathore, “A three-phase single-sensor-based Cuk-derived PFC converter with reduced number of components for more electric aircraft,” IEEE Trans. Transpot. Electrific., vol. 6, no. 4, pp. 1767-1779, Dec. 2020.
[144] T. B. Soeiro, T. Friedli, and J. W. Kolar, “Swiss rectifier- a novel three-phase buck-type PFC topology for electric vehicle battery charging,” in Proc. IEEE APEC, 2012, pp. 2617-2624.
[145] T. B. Soeiro, T. Friedli, and J. W. Kolar, “Design and implementation of a three-phase buck- type third harmonic current injection PFC rectifier SR,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1608-1621, Apr. 2013.
[146] L. Schrittwieser, J. W. Kolar, and T. B. Soeiro, “Novel Swiss rectifier modulation scheme preventing input current distortions at sector boundaries,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5771-5785, July 2017.
[147] J. Adhikari, P. IV, and S. K. Panda, “Reduction of input current harmonic distortions and balancing of output voltages of the Vienna rectifier under supply voltage disturbances,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5802-5812, July 2017.
[148] J. S. Lee and K. B. Lee, “Performance analysis of carrier-based discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4075-4084, June 2016.
[149] M. Leibl, J. W. Kolar, and J. Deuringer, “Sinusoidal input current discontinuous conduction mode control of the Vienna rectifier,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8800- 8812, Nov. 2017.
[150] T. Thangavelu, P. Shanmugam, and K. Raj, “Modelling and control of Vienna rectifier a single phase approach,” IET Power Electron., vol. 8, no. 12, pp. 2471-2482, Aug. 2015.
[151] A. Marcos-Pastor, E. Vidal-Idiarte, A. Cid-Pastor, and L. Martínez-Salamero, “Loss-free resistor-based power factor correction using a semi-bridgeless boost rectifier in sliding-mode control,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5842-5853, Oct. 2015.
[152] H. J. Kim, G. S. Seo, B. H. Cho, and H. Choi, “A simple average current control with on- time doubler for multiphase CCM PFC converter,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1683-1693, Mar. 2015.
[153] N. Vamanan and V. John, “Dual comparison one cycle control for single phase AC to DC converters,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3267-3278, July/Aug. 2016.
[154] S. Golestan, J. M. Guerrero, J. C. Vasquez, A. M. Abusorrah, Y. Al-turki, “Modeling, tuning, and performance comparison of second-order-generalized-integrator-based FLLs,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10229-10239, Dec. 2018.
[155] F. K. D. A. Lima, R. G. Araújo, F. L. Tofoli, and C. G. C. Branco, “A phase-locked loop algorithm for single-phase systems with inherent disturbance rejection,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9260-9267, Dec. 2019.
[156] S. Golestan, J. M. Guerrero, F. Musavi, and J. C. Vasquez, “Single-phase frequency-locked loops: a comprehensive review,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 11791- 11812, Dec. 2019.
F. Inverter
[157] M. N. H. Khan, M. Forouzesh, Y. P. Siwakoti, L. Li, T. Kerekes, and F. Blaabjerg, “Transformerless inverter topologies for single-phase photovoltaic system: a comparative review,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 8, no. 1, pp. 805-835, Mar. 2020.
[158] M. Schweizer, T. Friedli, and J. W. Kolar, “Comparative evaluation of advanced three-phase three-level inverter/converter topologies against two-level systems,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5515-5527, Dec. 2013.
[159] A. Salem, H. V. Khang, K. G. Roobbersmyr, M. Norambuena, and J. Rodriguez, “Voltage source multilevel inverters with reduced device count: topological review and novel comparative factors,” IEEE Trans. Power Electron., vol. 36, no. 3, pp. 2720-2747, Mar. 2021.
[160] T. G. Habetler, R. Naik, and T. A. Nondahl, “Design and implementation of an inverter output LC filter used for dv/dt reduction,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 327-331, May 2002.
[161] M. Pastura, S. Nuzzo, M. Kohler, and D. Barater, “Dv/dt filtering techniques for electric drives: review and challenges,” in Proc. IEEE IECON, 2019, pp. 7088-7093.
[162] E. Velander, G. Bohlin, Å. Sandberg, T. Wiik, F. Botling, M. Lindahl, G. Zanuso, and H. P. Nee, “An ultralow loss inductorless dv/dt filter concept for medium-power voltage source motor drive converters with SiC devices,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6072-6081, July 2018.
[163] J. Kim, J. Choi, and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. PowerCon, 2000, pp. 1659-1664, vol. 3.
[164] M. Huang, F. Blaabjerg, Y. H. Yang, W. Wu, “Step by step design of a high order power filter for three-phase three-wire grid-connected inverter in renewable energy system,” in Proc. IEEE PEDG, 2013, pp. 1-8.
[165] H. Deng, R. Oruganti, and D. Srinivasan, “A simple control method for high-performance UPS inverters through output-impedance reduction,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 888-898, Feb. 2008.
[166] H. G. Jeong, K. B. Lee, S. Choi, and W. Choi, “Performance improvement of LCL- filter-based grid-connected inverters using PQR power transformation,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1320-1330, May 2010.
[167] Y. Guan, J. M. Guerrero, X. Zhao, J. C. Vasquez, and X. Guo, “A new way of controlling parallel-connected inverters by using synchronous-reference-frame virtual impedance loop- part I: control principle,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4576-4593, June 2016.
[168] A. Abdelhakim, F. Blaabjerg, and P. Mattavelli, “Modulation schemes of the three-phase impedance source inverters- Part I: classification and review,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6309-6320, Aug. 2018.
[169] R. Ramos, D. Serrano, P. Alou, J. Á. Oliver, and J. A. Cobos, “Control design of a single- phase inverter operating with multiple modulation strategies and variable switching frequency,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2407-2419, Feb. 2021.
[170] M. P. Karmierkowski and L. Malesani, “Current control techniques for three-phase voltage- source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[171] M. Mohseni and S. M. Islam, “A new vector-based hysteresis current control scheme for three-phase PWM voltage-source inverters,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2299-2309, Sep. 2010.
[172] T. Tanaka, T. Sekiya, H. Tanaka, M. Okamoto, and E. Hiraki, “Smart charger for electric vehicles with power-quality compensator on single-phase three-wire distribution feeders,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2628-2635, Nov. 2013.
[173] H. Tanaka, T. Tanaka, T. Wakimoto, E. Hiraki, and M. Okamoto, “Reduced-capacity smart charger for electric vehicles on single-phase three-wire distribution feeders with reactive power control,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 315-324, Jan./Feb. 2015.
[174] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, Jan. 2016.
G. Energy Storage System
[175] E. O. Ogunniyi and H. Pienaar, “Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications,” in Proc. DUE, 2017, pp. 233-239.
[176] P. K. Pathak and A. R. Gupta, “Battery energy storage system,” in Proc. CICT, 2018, pp. 1-9.
[177] P. Y. Long, A. Cavagnino, S. Vaschetto, C. Feng, and A. Tenconi, “Flywheel energy storage systems for power system application,” in Proc. IEEE 2017 ICCEP, June 2017, pp. 492-501.
[178] D. Gerada, A. Mebarki, N. L. Brown, C. Gerada, A. Cavagnino, and A. Bolietti, “High-speed electrical machines: technologies, trends, and developments,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2946-2959, June 2014.
[179] S. Kumar, T. A. Lipo, and B. Kwon, “A 32000r/min axial flux permanent magnet machine for energy storage with mechanical stress analysis,” IEEE Trans. Magn., vol. 52, no. 7, pp. 1-4, July 2016.
[180] S. R. Gurumurthy, V. Agarwal, and A. Sharma, “A novel dual-winding BLDC generator- buck converter combination for enhancement of the harvested energy form a flywheel,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7563-7573, Dec. 2016.
[181] M. I. Daoud, A. M. Massoud, A. S. Abdel-Khalik, A. Elserougi, and S. Ahmed, “A flywheel energy storage system for fault ride through support of grid-connected VSC HVDC-based offshore wind farms,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 1671-1680, May 2016.
[182] M. Murayama, S. Kato, H. Tsutsui, S. Tsuji-Iio, and R. Shimada, “Combination of flywheel energy storage system and boosting modular multilevel cascade converter,” IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1-4, Apr. 2018.
[183] J. D. Park, C. Kalev, and H. F. Hofmann, “Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3038-3046, Aug. 2008.
[184] R. Cárdenas, R. Peña, M. Pérez, J. Clare, G. Asher, and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, Aug. 2006.
[185] J. R. Hull, T. M. Mulcahy, K. L. Uberka, and R. G. Abboud, “Low rotational drag in high- temperature superconducting bearings,” IEEE Trans. Appl. Supercond., vol. 5, no. 2, pp. 626- 629, June 1995.
[186] N. Tănase and A. M. Morega, “Passive magnetic bearings for flywheel energy storage- numerical design,” in Proc. IEEE 2014 ICATE, Dec. 2014, pp. 1-4.
[187] B. Anvari, X. J. Li, H. A. Toliyat, and A. Palazzolo, “A coreless permanent-magnet machine for a magnetically levitated shaft-less flywheel,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4288-4296, Sep./Oct. 2018.
[188] X. K. Xu, M. Bishop, D. G. Oikarinen, and C. Hao, “Application and modeling of battery energy storage in power systems,” CSEE J. Power Energy Syst., vol. 2, no. 3, pp. 82-90, Sep. 2016.
[189] Y. Elia, D. D. Lucache, and E. Serea, “Battery energy storage applications: two case studies,” in Proc. IEEE MPS, May 2019, pp. 1-6.
[190] J. Rocabert, R. Capó-Misut, R. S. Muñoz-Aguilar, J. I. Candela, and P. Rodriguez, “Control of energy storage system integrating electrochemical batteries and supercapacitors for grid- connected applications,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1853-1862, Mar./Apr. 2019.
[191] A. Sangwongwanich, G. Angenendt, S. Zurmühlen, Y. H. Yang, D. Sera, D. U. Sauer, and F. Blaabjerg, “Enhancing PV inverter reliability with battery system control strategy,” CSEE Trans. Power Electron. Appl., vol. 3, no. 2, pp. 93-101, June 2018.
[192] A. Sattar, A. Al-Durra, C. Caruana, M. Debouza, and S. M. Muyeen, “Testing the performance of battery energy storage in a wind energy conversion system,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3196-3206, May/June 2020.
[193] A. H. Fathima and K. Palanisamy, “Battery energy storage applications in wind integrated systems- a review,” in Proc. IEEE ISEG, Sep. 2014, pp. 1-8.
[194] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics – lead acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSim, Mar. 2015, pp. 444-450.
[195] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
[196] K. Bradbury, Energy Storage Technology Review, Duke University, Aug. 2010.
[197] N. Jabbour and C. Mademlis, “Supercapatiror-based energy recovery system with improved power control and energy management for elevator applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9389-9399, Dec. 2017.
[198] K. Bellache, M. B. Camara, and B. Dakyo, “Transient power control for diesel-generator assistance in electric boat applications using supercapacitors and batteries,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 6, no. 1, pp. 416-428, Mar. 2018.
[199] D. Yıldırım, M. H. Akşit, C. Yolaçan, T. Pul, C. Ermiş, B. H. Aghdam, I. Çadırcı and M. Ermiş, “Full-scale physical simulator of all SiC traction motor drive with onboard supercapacitor ESS for light-rail public transportation,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6290-6301, Aug. 2020.
[200] J. H. Lee, S. H. Lee, and S. K. Sul, “Variable-speed engine generator with supercapacitor: isolated power generation system and fuel efficiency,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2130-2135, Nov./Dec. 2009.
[201] M. Farhadi and O. Mohammed, “Adaptive energy management in redundant hybrid DC microgrid for pulse load mitigation,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 54-62, Jan. 2015.
H. DC-bus Voltage-level Selection
[202] S. Moussa, M. J. Ghorbal, I. Slama-Belkhodja, “DC voltage level choice in residential remote area,” in Proc. IREC, 2018, pp. 1-6.
[203] W. X. Li, X. M. Mou, Y. B. Zhou, and C. Marnay, “On voltage standards for DC home microgrids energized by distributed sources,” in Proc. IEEE PEMC, 2012, pp. 2282-2286.
[204] J. W. Chen, C. J. Wang, and J. Chen, “Investigation on the selection of electric power system architecture for future more electric aircraft,” IEEE Trans. Transport. Electrific., vol. 4, no. 2, pp. 563-576, June 2018.
[205] G. AlLee and W. Tschudi, “Edison redux: 380 Vdc brings reliability and efficiency to sustainable data centers,” in IEEE Power and Energy Magazine, vol. 10, no. 6, pp. 50-59, Nov.-Dec. 2012.
[206] A. Pratt, P. Kumar, and T. V. Aldridge, “Evaluation of 400V DC distribution in telco and data centers to improve energy efficiency,” in Proc. INTELEC, 2007, pp. 32-39.
I. Others
[207] S. Heier, Grid Integration of Wind Energy Conversion System, 2nd Ed., John Wiley & Sons Ltd., New York, 1998.
[208] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859- 1875, 2009.
[209] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-power wind energy conversion systems: state-of-art and emerging technologies,” Proc. IEEE, vol. 103, no. 5, pp. 740-788, 2015.
[210] Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2010.
[211] “TMS320F28335 digital signal controllers (DSCs) data manual,” Available: https:// www.ti.com/lit/ds/symlink/tms320f28335-q1.pdf?ts=1639242651187, Feb. 2021.
[212] H. Miniguano, A.Barrado, C. Raga, A. Lázaro, C. Fernández, and M. Sanz, “A comparative study and parameterization of supercapacitor electrical models applied to hybrid electric vehicles,” in Proc. ESARS-ITEC, 2016, pp. 1-6.
[213] T. M. Hsieh, “A switched-reluctance motor drive with hybrid energy storage support and comparative evaluation,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2020.
[214] P. H. Jhou, “A wind switched-reluctance generator based grid-connected micro-grid,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2017.
[215] V. K. Ganissetti, “Development of an electric vehicle synchronous reluctance motor drive and its interconnected operations to grid and microgrid,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2021.
[216] C. C. Wang, “A wind switched-reluctance generator based bipolar DC microgrid,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2020.