研究生: |
嚴彗嫣 Yen, Hui-yen |
---|---|
論文名稱: |
二-(2-苯基吡啶)-(2,2'-雙吡啶)-銥金屬錯合物於AOT反微胞系統之光物理性質與環境侷限效應研究 Investigation of emission mechanism and environment confinement effects of [Ir(ppy)2bpy](PF6) using nonaqueous reverse micelles. |
指導教授: |
陳益佳
Chen, I-Chia |
口試委員: |
鄭博元
Cheng, Po-yuan 張智煒 Chang, Chih-Wei 陳益佳 Chen, I-Chia |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 150 |
中文關鍵詞: | 陽離子型環銥金屬錯合物 、環境侷限效應 、反相微胞 、奈秒時間解析光譜 、時間相關單一光子計數系統 |
外文關鍵詞: | [Ir(ppy)2bpy]+, Environment confinement effect, reverse micelles, nano-picosecond time resolved measurements, Time-Correlated Single Photon Counting |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究陽離子型環銥金屬錯合物[Ir(ppy)2bpy]+放光電子能態間之能量轉移,以自行架設之時間相關單一光子技術系統、奈秒時間解析螢光系統,測量[Ir(ppy)2bpy]+於氯仿、二氯甲烷、乙腈、二甲基甲醯胺等幾種常用溶劑及反微胞系統中之放光行為,並發展動力學機制與瞭解環境侷限效應。為了使研究成果與實際的元件應用更為貼近,我們使用界面活性劑磺基琥珀酸钠二辛酯(Dioctyl sodium sulfosuccinate, AOT)形成反微胞系統,創造介於液態與固態間的侷限環境, AOT適用的非極性溶劑環境相當廣泛,其反微胞內徑由極性溶劑與界面活性劑之分子數比值Ws決定(W_s "=" "[Polar solvent]" /"[AOT]" ),本研究中使用兩種反微胞尺寸,分別是Ws=2及Ws=4。在[Ir(ppy)2bpy]+的全光譜中,我們總共發現六個放光電子激發態的存在,其中五個衰減成分由生命期短至長排序為τ1~τ5,上昇成分則令為τr。在藍色譜帶有兩成分存在,生命期τ2約1.5ns的貢獻能態指認為配位基ppy內電荷轉移能態3ILCTppy,生命期τ5在1.4~2.9 μs的貢獻能態為配位基間電荷轉移能態3LLCT。在綠色譜帶亦有兩生命期較短的成分存在,分別是來自3MLCTppy,生命期τ3為幾個奈秒的放光;以及來自3MLCTppy/bpy混合能態,生命期τ1範圍在0.21~0.45 ns的快速衰減成分。快速上升成分與生命期幾百奈秒的下降成分則屬於橘色譜帶,上升成分生命期τr約0.19~0.45 ns,是由3MLCTppy/bpy至3MLCTbpy能態的激子轉移造成;而生命期τ4約幾百個奈秒的衰減成分則是3MLCTbpy能態的放光。藉由各成分生命期及貢獻比例隨溶劑極性變化的趨勢,我們修正之前吳等人(J. Phys. Chem. A 2010, 114 (38), 10339-44.)針對[Ir(ppy)2bpy]+的電子激態動力學模型,更貼切的描述[Ir(ppy)2bpy]+在不同極性環境下的能量轉移情形。
1. DeArmond, M. K., Phosphorescence of Transition-Metal Chelates. J. Chem. Phys 1968, 49 (1), 466.
2. Demas, J. N.; Crosby, G. A., On the multiplicity of the emitting state of ruthenium(II) complexes. J. Mol. Spectrosc. 1968, 26 (1), 72-77.
3. Lytle, F. E.; Hercules, D. M., Luminescence of tris(2,2'-bipyridine)ruthenium(II) dichloride. J. Am. Chem. Soc. 1969, 91 (2), 253-257.
4. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. J. Chem. Phys 1963, 38 (8), 2042.
5. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51 (12), 913.
6. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347 (6293), 539-541.
7. Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore, S. S.; Cram, D. J., Host-guest complexation. 1. Concept and illustration. J. Am. Chem. Soc. 1977, 99 (8), 2564-2571.
8. Freeman, W. A., Structures of thep-xylylenediammonium chloride and calcium hydrogensulfate adducts of the cavitand 'cucurbituril', C36H36N24O12. Acta Crystallographica Section B: Structural Science 1984, 40 (4), 382-387.
9. King, K. A.; Watts, R. J., Dual emission from an ortho-metalated iridium(III) complex. J. Am. Chem. Soc. 1987, 109 (5), 1589-1590.
10. Ohsawa, Y.; Sprouse, S.; King, K. A.; DeArmond, M. K.; Hanck, K. W.; Watts, R. J., Electrochemistry and spectroscopy of ortho-metalated complexes of iridium(III) and rhodium(III). J. Phys. Chem. 1987, 91 (5), 1047-1054.
11. Kahl, J. L.; Hanck, K. W.; DeArmond, K., Electrochemistry of iridium-bipyridine complexes. J. Phys. Chem. 1978, 82 (5), 540-545.
12. Hay, P. J., Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory. J. Phys. Chem. A 2002, 106 (8), 1634-1641.
13. Wu, S. H.; Ling, J. W.; Lai, S. H.; Huang, M. J.; Cheng, C. H.; Chen, I. C., Dynamics of the excited states of [Ir(ppy)2bpy]+ with triple phosphorescence. J. Phys. Chem. A 2010, 114 (38), 10339-10344.
14. Sun, C. Y.; Wang, X. L.; Zhang, X.; Qin, C.; Li, P.; Su, Z. M.; Zhu, D. X.; Shan, G. G.; Shao, K. Z.; Wu, H.; Li, J., Efficient and tunable white-light emission of metal-organic frameworks by iridium-complex encapsulation. Nat. Commun. 2013, 4, 2717.
15. Correa, N. M.; Silber, J. J.; Riter, R. E.; Levinger, N. E., Nonaqueous polar solvents in reverse micelle systems. Chem. Rev. 2012, 112 (8), 4569-4602.
16. Lattes, A.; Rico, I.; Savignac, A. d.; Samii, A. A.-Z., Formamide, a water substitute in micelles and microemulsions xxx structural analysis using a diels-alder reaction as a chemical probe. Tetrahedron 1987, 43 (7), 1725-1735.
17. Pileni, M. P., Reverse micelles as microreactors. J. Phys. Chem. 1993, 97 (27), 6961-6973.
18. Pileni, M. P., The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2003, 2 (3), 145-150.
19. Holmberg, K., Organic reactions in microemulsions. Curr. Opin. Colloid Interface Sci. 2003, 8 (2), 187-196.
20. Nandi, N.; Bhattacharyya, K.; Bagchi, B., Dielectric Relaxation and Solvation Dynamics of Water in Complex Chemical and Biological Systems. Chem. Rev. 2000, 100 (6), 2013-2046.
21. Kawamoto, S.; Takasu, M.; Miyakawa, T.; Morikawa, R.; Oda, T.; Futaki, S.; Nagao, H., Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group. J. Chem. Phys 2011, 134 (9), 95-103.
22. Shirota, H.; Segawa, H., Solvation dynamics of formamide and N,N-dimethylformamide in aerosol OT reverse micelles. Langmuir 2004, 20 (2), 329-335.
23. Novaira, M.; Moyano, F.; Biasutti, M. A.; Silber, J. J.; Correa, N. M., An example of how to use AOT reverse micelle interfaces to control a photoinduced intramolecular charge-transfer process. Langmuir 2008, 24 (9), 4637-4646.
24. Falcone, R. D.; Silber, J. J.; Correa, N. M., What are the factors that control non-aqueous/AOT/n-heptane reverse micelle sizes? A dynamic light scattering study. Phys. Chem. Chem. Phys. 2009, 11 (47), 11096-11100.
25. Riter, R. E.; Kimmel, J. R.; Undiks, E. P.; Levinger, N. E., Novel reverse micelles partitioning nonaqueous polar solvents in a hydrocarbon continuous phase. Journal of Physical Chemistry B 1997, 101 (41), 8292-8297.
26. Hazra, P.; Chakrabarty, D.; Sarkar, N., Solvation dynamics of Coumarin 152A in methanol and acetonitrile reverse micelles. Chem. Phys. Lett. 2002, 358 (5-6), 523-530.
27. Sapp, S. A.; Elliott, C. M., Solid-State Solutions: Polymer-Encapsulated Reverse Micelles Containing Dye Solutions. Chem. Mater. 2003, 15 (6), 1237-1241.
28. Weber, J. M.; Rawls, M. T.; Mackenzie, V. J.; Limoges, B. R.; Elliott, C. M., High energy and quantum efficiency in photoinduced charge separation. J. Am. Chem. Soc. 2007, 129 (2), 313-320.
29. Costa, R. D.; Orti, E.; Bolink, H. J.; Monti, F.; Accorsi, G.; Armaroli, N., Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angewandte Chemie International Edition 2012, 51 (33), 8178-8211.
30. Kotlarchyk, M.; Huang, J. S.; Chen, S. H., Structure of AOT reversed micelles determined by small-angle neutron scattering. J. Phys. Chem. 1985, 89 (20), 4382-4386.
31. Reynolds, G. A.; Drexhage, K. H., New Coumarin Dyes with Rigidized Structure for Flashlamp-Pumped Dye Lasers. Opt. Commun. 1975, 13 (3), 222-225.
32. Goffredi, M.; Liveri, V. T.; Vassallo, G., Refractive index of water-AOT-n-heptane microemulsions. J. Solution Chem. 1993, 22 (10), 941-949.
33. 凌榕蔚, 二-(2-苯基吡啶)-( 2,2’-雙吡啶)-銥金屬錯合物
振動模式與光譜動力學之研究. 國立清華大學化學系碩士論文 2008.
34. 吳世翔, 二-(2-苯基吡啶)-(2,2’-雙吡啶)-銥金屬錯合物之電子
激發態之光譜動力學研究. 國立清華大學化學系碩士班論文 2009.
35. Katritzky, A. R.; Fara, D. C.; Yang, H.; Tamm, K.; Tamm, T.; Karelson, M., Quantitative measures of solvent polarity. Chem. Rev. 2004, 104 (1), 175-198.
36. Hedley, G. J.; Ruseckas, A.; Samuel, I. D. W., Ultrafast luminescence in Ir(ppy)3. Chem. Phys. Lett. 2008, 450 (4-6), 292-296.