簡易檢索 / 詳目顯示

研究生: 嚴彗嫣
Yen, Hui-yen
論文名稱: 二-(2-苯基吡啶)-(2,2'-雙吡啶)-銥金屬錯合物於AOT反微胞系統之光物理性質與環境侷限效應研究
Investigation of emission mechanism and environment confinement effects of [Ir(ppy)2bpy](PF6) using nonaqueous reverse micelles.
指導教授: 陳益佳
Chen, I-Chia
口試委員: 鄭博元
Cheng, Po-yuan
張智煒
Chang, Chih-Wei
陳益佳
Chen, I-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 150
中文關鍵詞: 陽離子型環銥金屬錯合物環境侷限效應反相微胞奈秒時間解析光譜時間相關單一光子計數系統
外文關鍵詞: [Ir(ppy)2bpy]+, Environment confinement effect, reverse micelles, nano-picosecond time resolved measurements, Time-Correlated Single Photon Counting
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究陽離子型環銥金屬錯合物[Ir(ppy)2bpy]+放光電子能態間之能量轉移,以自行架設之時間相關單一光子技術系統、奈秒時間解析螢光系統,測量[Ir(ppy)2bpy]+於氯仿、二氯甲烷、乙腈、二甲基甲醯胺等幾種常用溶劑及反微胞系統中之放光行為,並發展動力學機制與瞭解環境侷限效應。為了使研究成果與實際的元件應用更為貼近,我們使用界面活性劑磺基琥珀酸钠二辛酯(Dioctyl sodium sulfosuccinate, AOT)形成反微胞系統,創造介於液態與固態間的侷限環境, AOT適用的非極性溶劑環境相當廣泛,其反微胞內徑由極性溶劑與界面活性劑之分子數比值Ws決定(W_s "=" "[Polar solvent]" /"[AOT]" ),本研究中使用兩種反微胞尺寸,分別是Ws=2及Ws=4。在[Ir(ppy)2bpy]+的全光譜中,我們總共發現六個放光電子激發態的存在,其中五個衰減成分由生命期短至長排序為τ1~τ5,上昇成分則令為τr。在藍色譜帶有兩成分存在,生命期τ2約1.5ns的貢獻能態指認為配位基ppy內電荷轉移能態3ILCTppy,生命期τ5在1.4~2.9 μs的貢獻能態為配位基間電荷轉移能態3LLCT。在綠色譜帶亦有兩生命期較短的成分存在,分別是來自3MLCTppy,生命期τ3為幾個奈秒的放光;以及來自3MLCTppy/bpy混合能態,生命期τ1範圍在0.21~0.45 ns的快速衰減成分。快速上升成分與生命期幾百奈秒的下降成分則屬於橘色譜帶,上升成分生命期τr約0.19~0.45 ns,是由3MLCTppy/bpy至3MLCTbpy能態的激子轉移造成;而生命期τ4約幾百個奈秒的衰減成分則是3MLCTbpy能態的放光。藉由各成分生命期及貢獻比例隨溶劑極性變化的趨勢,我們修正之前吳等人(J. Phys. Chem. A 2010, 114 (38), 10339-44.)針對[Ir(ppy)2bpy]+的電子激態動力學模型,更貼切的描述[Ir(ppy)2bpy]+在不同極性環境下的能量轉移情形。


    摘要 I 目錄 II 圖目錄 V 表目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 有機電致發光材料沿革 1 1.3 過渡金屬錯合物發光原理 2 1.4 主客化學 4 1.5 文獻回顧 5 1.5.1 環銥金屬錯合物 5 1.5.2 環境侷限效應與反微胞系統 13 1.6 研究動機 18 第二章 實驗系統架設與樣品配製 19 2.1 紫外光-可見光吸收分光光度計與螢光分光光度計 19 2.2 奈秒(nanosecond)時間解析放光光譜技術 20 2.3 時間相關單一光子計數系統(Time-Correlated Single Photon Counting, TCSPC) 22 2.3.1 原理 22 2.3.2 鑑別器(Discriminator) 25 2.3.2.1 前緣式鑑別器 (Leading-edge discriminator,LED) 25 2.3.2.2 分數式鑑別器 (Constant-fraction discriminator,CFD) 26 2.3.3 偵測器(Detector) 26 2.3.4 前置放大器(Pre-amplifier) 28 2.3.5 時間振幅轉換器(Time-to-amplitude converter, TAC) 28 2.3.6 時間相關單光子計數系統架設 29 2.4 動態光散射儀 31 2.5 實驗設定條件 32 2.6 合成方法 34 2.7 實驗藥品濃度與配置方法 35 2.7.1 樣品配置方法 35 第三章 實驗結果 37 3.1 反微胞尺寸鑑定 37 3.2 理論計算結果 37 3.3 穩態吸收與放光光譜 39 3.3.1 一般溶劑系統 39 3.3.2 DMF/AOT反微胞系統 40 3.4 量子產率(Quantum yield) 41 3.5 奈秒時間解析光譜 42 3.5.1 一般溶劑系統 42 3.5.2 DMF/AOT反微胞系統 43 3.6 短時域放光衰減光譜 44 3.6.1 一般溶劑系統 44 3.6.2 DMF/AOT反微胞系統 46 第四章 動力學模式與討論 123 4.1 [Ir(ppy)2bpy]+之AOT反微胞溶液 123 4.2 動力學模型的推導修正 123 4.2.1 一般溶劑系統 123 4.2.2 DMF/AOT反微胞系統 126 第五章 結論及未來展望 135 參考文獻 137 附錄 TD-DFT理論計算 141

    1. DeArmond, M. K., Phosphorescence of Transition-Metal Chelates. J. Chem. Phys 1968, 49 (1), 466.
    2. Demas, J. N.; Crosby, G. A., On the multiplicity of the emitting state of ruthenium(II) complexes. J. Mol. Spectrosc. 1968, 26 (1), 72-77.
    3. Lytle, F. E.; Hercules, D. M., Luminescence of tris(2,2'-bipyridine)ruthenium(II) dichloride. J. Am. Chem. Soc. 1969, 91 (2), 253-257.
    4. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. J. Chem. Phys 1963, 38 (8), 2042.
    5. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51 (12), 913.
    6. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347 (6293), 539-541.
    7. Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore, S. S.; Cram, D. J., Host-guest complexation. 1. Concept and illustration. J. Am. Chem. Soc. 1977, 99 (8), 2564-2571.
    8. Freeman, W. A., Structures of thep-xylylenediammonium chloride and calcium hydrogensulfate adducts of the cavitand 'cucurbituril', C36H36N24O12. Acta Crystallographica Section B: Structural Science 1984, 40 (4), 382-387.
    9. King, K. A.; Watts, R. J., Dual emission from an ortho-metalated iridium(III) complex. J. Am. Chem. Soc. 1987, 109 (5), 1589-1590.
    10. Ohsawa, Y.; Sprouse, S.; King, K. A.; DeArmond, M. K.; Hanck, K. W.; Watts, R. J., Electrochemistry and spectroscopy of ortho-metalated complexes of iridium(III) and rhodium(III). J. Phys. Chem. 1987, 91 (5), 1047-1054.
    11. Kahl, J. L.; Hanck, K. W.; DeArmond, K., Electrochemistry of iridium-bipyridine complexes. J. Phys. Chem. 1978, 82 (5), 540-545.
    12. Hay, P. J., Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory. J. Phys. Chem. A 2002, 106 (8), 1634-1641.
    13. Wu, S. H.; Ling, J. W.; Lai, S. H.; Huang, M. J.; Cheng, C. H.; Chen, I. C., Dynamics of the excited states of [Ir(ppy)2bpy]+ with triple phosphorescence. J. Phys. Chem. A 2010, 114 (38), 10339-10344.
    14. Sun, C. Y.; Wang, X. L.; Zhang, X.; Qin, C.; Li, P.; Su, Z. M.; Zhu, D. X.; Shan, G. G.; Shao, K. Z.; Wu, H.; Li, J., Efficient and tunable white-light emission of metal-organic frameworks by iridium-complex encapsulation. Nat. Commun. 2013, 4, 2717.
    15. Correa, N. M.; Silber, J. J.; Riter, R. E.; Levinger, N. E., Nonaqueous polar solvents in reverse micelle systems. Chem. Rev. 2012, 112 (8), 4569-4602.
    16. Lattes, A.; Rico, I.; Savignac, A. d.; Samii, A. A.-Z., Formamide, a water substitute in micelles and microemulsions xxx structural analysis using a diels-alder reaction as a chemical probe. Tetrahedron 1987, 43 (7), 1725-1735.
    17. Pileni, M. P., Reverse micelles as microreactors. J. Phys. Chem. 1993, 97 (27), 6961-6973.
    18. Pileni, M. P., The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2003, 2 (3), 145-150.
    19. Holmberg, K., Organic reactions in microemulsions. Curr. Opin. Colloid Interface Sci. 2003, 8 (2), 187-196.
    20. Nandi, N.; Bhattacharyya, K.; Bagchi, B., Dielectric Relaxation and Solvation Dynamics of Water in Complex Chemical and Biological Systems. Chem. Rev. 2000, 100 (6), 2013-2046.
    21. Kawamoto, S.; Takasu, M.; Miyakawa, T.; Morikawa, R.; Oda, T.; Futaki, S.; Nagao, H., Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group. J. Chem. Phys 2011, 134 (9), 95-103.
    22. Shirota, H.; Segawa, H., Solvation dynamics of formamide and N,N-dimethylformamide in aerosol OT reverse micelles. Langmuir 2004, 20 (2), 329-335.
    23. Novaira, M.; Moyano, F.; Biasutti, M. A.; Silber, J. J.; Correa, N. M., An example of how to use AOT reverse micelle interfaces to control a photoinduced intramolecular charge-transfer process. Langmuir 2008, 24 (9), 4637-4646.
    24. Falcone, R. D.; Silber, J. J.; Correa, N. M., What are the factors that control non-aqueous/AOT/n-heptane reverse micelle sizes? A dynamic light scattering study. Phys. Chem. Chem. Phys. 2009, 11 (47), 11096-11100.
    25. Riter, R. E.; Kimmel, J. R.; Undiks, E. P.; Levinger, N. E., Novel reverse micelles partitioning nonaqueous polar solvents in a hydrocarbon continuous phase. Journal of Physical Chemistry B 1997, 101 (41), 8292-8297.
    26. Hazra, P.; Chakrabarty, D.; Sarkar, N., Solvation dynamics of Coumarin 152A in methanol and acetonitrile reverse micelles. Chem. Phys. Lett. 2002, 358 (5-6), 523-530.
    27. Sapp, S. A.; Elliott, C. M., Solid-State Solutions: Polymer-Encapsulated Reverse Micelles Containing Dye Solutions. Chem. Mater. 2003, 15 (6), 1237-1241.
    28. Weber, J. M.; Rawls, M. T.; Mackenzie, V. J.; Limoges, B. R.; Elliott, C. M., High energy and quantum efficiency in photoinduced charge separation. J. Am. Chem. Soc. 2007, 129 (2), 313-320.
    29. Costa, R. D.; Orti, E.; Bolink, H. J.; Monti, F.; Accorsi, G.; Armaroli, N., Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angewandte Chemie International Edition 2012, 51 (33), 8178-8211.
    30. Kotlarchyk, M.; Huang, J. S.; Chen, S. H., Structure of AOT reversed micelles determined by small-angle neutron scattering. J. Phys. Chem. 1985, 89 (20), 4382-4386.
    31. Reynolds, G. A.; Drexhage, K. H., New Coumarin Dyes with Rigidized Structure for Flashlamp-Pumped Dye Lasers. Opt. Commun. 1975, 13 (3), 222-225.
    32. Goffredi, M.; Liveri, V. T.; Vassallo, G., Refractive index of water-AOT-n-heptane microemulsions. J. Solution Chem. 1993, 22 (10), 941-949.
    33. 凌榕蔚, 二-(2-苯基吡啶)-( 2,2’-雙吡啶)-銥金屬錯合物
    振動模式與光譜動力學之研究. 國立清華大學化學系碩士論文 2008.
    34. 吳世翔, 二-(2-苯基吡啶)-(2,2’-雙吡啶)-銥金屬錯合物之電子
    激發態之光譜動力學研究. 國立清華大學化學系碩士班論文 2009.
    35. Katritzky, A. R.; Fara, D. C.; Yang, H.; Tamm, K.; Tamm, T.; Karelson, M., Quantitative measures of solvent polarity. Chem. Rev. 2004, 104 (1), 175-198.
    36. Hedley, G. J.; Ruseckas, A.; Samuel, I. D. W., Ultrafast luminescence in Ir(ppy)3. Chem. Phys. Lett. 2008, 450 (4-6), 292-296.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE