研究生: |
鍾昌宏 Chung, Chang-Hung |
---|---|
論文名稱: |
高K值熱界面材料之研發 Research and Development of Thermal Interface Materials with High Thermal Conductivity |
指導教授: |
林唯耕
Lin, Wei-Keng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 183 |
中文關鍵詞: | 熱介面材料 、熱阻 、接觸熱阻 、熱傳導係數 、聚乙二醇 、矽油 |
外文關鍵詞: | Thermal Interface Material (T.I.M.), Thermal Resistance, Contact Resistance, Thermal Conductivity, Polyethylene Glycols (PEG-400), Silicone oil |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電子構裝散熱中,為了降低散熱模組與發熱源的表面接觸熱阻,故需要使用熱介面材料(Thermal Interface Material, T.I.M.)把CPU所產生的高熱有效的帶走已達到散熱的目的。本論文主要目的為以實驗方法去討論不同粒徑的鋁粉尺寸與不同的高分子材料去搭配,藉此找出最適合的材料與配方去製作高熱傳導係數之導熱膏,同時在實際應用上能有效的降低系統熱阻。
本論文實驗分為三大部分:第一部分為TIM 量測平台的穩定性分析,第二部份為鋁粉填充比率對熱傳導係數實驗分析,第三部份為聚乙二醇(Polyethylene Glycols,PEG-400)對熱傳導係數的影響。
由實驗結果可以發現,改良後之T.I.M.量測平台所量測出道康寧TC-5121熱傳導係數重複性與再現性相對誤差都在1%以下;信越7762熱傳導係數重複性相對誤差都在5%以下而再現性相對誤差都在3%以下,故本量測平台具有良好的穩定性與準確性;由鋁粉填充比率對熱傳導係數實驗結果可知,導熱膏的熱傳導係數會隨著鋁粉重量百分比的增加而提升,大約在78~80 Wt% 左右為導熱膏填充比率之極限也有最高的熱傳導係數;由聚乙二醇對熱傳導係數的影響實驗結果可知,不論在single-mode或bi-mode的堆疊方式,聚乙二醇可發揮其bonding之能力有助於形成有效的熱傳途徑並提高導熱膏的熱傳導係數而使用聚乙二醇與低黏度矽油(250 cs.)以適當的比例作撘配後當作導熱膏載體,有助於降低系統熱阻。
[1]D.D.L. Chung,“Materials for thermal conduction”, Applied Thermal Engineering, 2001
[2]ASTM D374, Standard Test Methods for Thickness of Solid Electrical Insulation Materials, American Society for Testing and Materials, West Conshohocken, PA.
[3]ASTM D5470-01, Standard Test Methods for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials, American Society for Testing and Materials, West Conshohocken, PA.
[4]ASTM E1225-99, Standard Test Method for Thermal Conductivity of Solid by Means of Guarded-Comparative-Longitudinal Heat Flow Technique, West Conshohocken, PA.
[5]Ravi Prasher,“Thermal Interface Materials: Historical Perspective, Status, and Future Directions”, IEEE, Vol. 94, No. 8, August 2006
[6]“Decreasing Thermal Contact Resistance by Using Interface Materials”, Qpedia, 2008
[7]Yi-Fan Xu,“Uncertainty Analysis of the T.I.M.. Measured Instrument, “ July 16, 2008
[8] Ashay Dani,James C,Jr. Matayabas, Paul Koning,”THERMAL INTERFACE MATERIAL TECHNILOGY ADVANCEMENTS AND CHALLENG-AN OVERVIEW”, Intel Corporation Assembly Technology Development 5000,W.Chandler Blvd Chandler,AZ 85226.
[9] 黃振東、張志忠,「熱界面材料的發展現況與專利分析」,熱管理產業通訊,第2期。
[10] M. Grujicic, C. L. Zhao, E. C. Dusel, “The Effect of Thermal Contact Resistance on Heat Management in the Electronic Packaging”, Applied Surface Science, 2005.
[11]Dr. Ron Hunadi, “Thermal Greases with Exceptionally High Thermal Conductivity and Low Thermal Resistance”, International Symposium on Advanced Packaging Materials, 1998.
[12]Wui-wai Cheng, Chakravarti Madhusudana, “Effect of Electroplating on the Thermal Conductance of Fin-Tube Interface”, Applied Thermal Engineering, 2006.
[13]Thermagon Company, “Test Specifications of Thermal Resistance”, September 2001.
[14]J.P. Gwinn, R.L. Webb, “Performance and Testing of Thermal Interface Materials”, Microelectronics Journal, 2003.
[15]P. BUJARD,“THERMAL CONDUCTIVITY Of BORON NITRIDE FILLED EPOXY RESINS: TEMPERATURE DEPENDENCE AND INFLUENCE OF SAMPLE PREPARATION, IEEE, Feburary 1, 1998 [16]Yunsheng Xu, D.D.L. Chung, Cathleen Mroz,“Thermally conducting aluminum nitride polymer-matrix composites, Composites Part A, applied science and manufacturing, 2001
[17]Haysuo Ishida, Sarawut Rimdusit,“Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine, Thermochimica Acta 320. 1998
[18] 許毅帆,「熱介面材料(T.I.M.)測試平台之不準度分析」,碩士論文,清華大學工程與系統科學研究所,2007。