研究生: |
張佐吉 Tso-Chi Chang |
---|---|
論文名稱: |
晶片級微測試儀器之開發及其於薄膜材料機械性質量測之應用 The Development of Chip-scale Micro-Instrument and It's Application on Determining Thin Films Material Properties |
指導教授: |
方維倫
Wei-leun Fang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 微測試儀器 、薄膜材料機械性質 、楊氏模數 、彎曲測試 |
外文關鍵詞: | Micro-Instrument, Thin Films Material Properties, Young's Modulus, Bending Testing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出了利用微加工製程,於矽晶片上製作微小化的測試儀器,藉由尺寸、出力相容的特性,該儀器被應用來量測薄膜機械性質,以及奈微米尺度之元件的機械特性。此儀器是由數種模組所構成,例如機械結構模組,致動模組,感測模組,積體電路模組,使用者可以根據應用的需求,選擇不同規格與特性的模組,再藉由不同模組的搭配,架構出在設計上具有彈性、製程容易實現等優點之微測試儀器。
本文以彎曲測試機制之微測試儀器為例,說明各個部份之設計考量點,例如其具備高解析度的力量輸出裝置(致動模組),次微米的位移感測裝置(感測模組),高剛性比之線性支撐彈簧(機械結構模組)等。本文亦針對該儀器之靜態、動態特性及電性進行測試,並使用商用儀器奈米壓痕系統、微機電元件運動分析儀對微測試儀器之力量和位移進行校正,最後利用此測試儀器對單晶矽懸臂樑進行彎曲測試,然後測得單晶矽之楊氏模數為173 GPa,與文獻僅4.8 %的誤差量,証明微測試儀器的可行性。
本文已成功的將微測試儀器之探頭裸露,使待測的薄膜材料試片不會受到單一種類的限制,未來希望能完成線上測試以量測到不同薄膜材料之機械性質,以發揮此微測試儀器之多功能性,如能再與控制及感測電路整合在一起,將具備即時檢測薄膜材料機械性質的功能。
[1] T. P. Weihs, S. Hong, J. C. Bravman, and W. D. Nix, “Mechanical deflection of cantilver microbeams:A new technique for testing the mechanical properties of thin films,” Journal of Materials Research, 3, No.5, pp. 931-942, 1988.
[2] W. D. Nix, “Mechanical properties of thin films,” Metallurgical Transaction A, 20A, pp. 2217-2245, 1989.
[3] C. Serre, A. P. Rodriguez, J.R. Morante, P. Gorostiza, and J. Esteve, “Determination of micromechanical properties of thin films by beam bending measurements with an Atomic Force Microscope,” Sensors and Actuators A, 67, pp. 215-219, 1998.
[4] S. Sundararajan, and B. Bhushan, “Development of AFM-based techniques to measure mechanical properties of nanoscale structures,” Sensors and Actuators A, 101, pp. 338-351, 2002.
[5] X. Li, and B. Bhushan, “Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Surface and Coatings Technology, 163-164, pp. 521-526, 2003.
[6] K. P. Larsen , A. A. Rasmussen, Jan T. Ravnkilde, Morten Ginnerup ,and Ole Hansen, “MEMS device for bending test : measurements of fatigue and creep of electroplated nickel,” Sensors and Actuators A, 103, pp. 156-164, 2003.
[7] M. A. Haque, and M. T. A. Saif, “Microscale materials testing using MEMS actuators,” Journal of Microelectromechanical Systems, 10, No.1, 2001.
[8] M. A. Haque, and M. T. A. Saif, “A review of MEMS-Based microscale and nanoscale tensile and bending testing,” Society for experimental mechanics, 43, pp. 248-255, 2003.
[9] 徐昌駿, “奈米壓痕系統於微懸臂樑彎矩測試之研究,” 國立清華大學動機系碩士論文, 2004.
[10] W. N. Sharpe, B. Yuan, and R. L. Edwards, “A new technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, 6, No.3, 1997.
[11] K. Sato, T. Yoshioka, T. Ando, M. Shikida, and T. Kawabata, “Tensile testing of silicon film having different crystallographic orientations carried out on a silicon chip,” Sensors and Actuators A, 70, pp. 148-152, 1998.
[12] T. Yoshioka, T. Ando, M. Shikida, and K. Sato, “Tensile testing of SiO2 and Si3N4 films carried out on a silicon chip,” Sensors and Actuators A, 82, pp.291-296, 2000.
[13] T. Ando, M. Shikida, and K. Sato, “Tensile-mode fatigue testing of silicon films as structural materials for MEMS,” Sensors and Actuators A, 93, pp. 70-75, 2001.
[14] T. Ando, X. Li, S. Nakao, T. Kasai, M. Shikida, and K. Sato, “Effect of crystal orientation on fracture strength and fracture toughness of single crystal silicon,” IEEE MEMS’04, Maastricht, Netherlands, 2004, pp. 177-180.
[15] M. T. A. Saif, and N. C. MacDonald, “Measurement of forces and spring constants of micxroinstruments,” American Institute of Physics, 69, pp. 1410-1422, 1998.
[16] W. C. Oliver, and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, 7, No.6, pp. 1564-1583, 1992.
[17] W. C. Oliver, and J. B. Pethica, “Method for continuous determination of the elastic stiffness of contact between two bodies,” United States Patent, No.4848141, 1989.
[18] X. Li, and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Materials Characterization, 48, pp. 11-36, 2002.
[19] K. E. Petersen, and C. R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physics, 50, pp. 6761-6766, 1979.
[20] L. Kiesewetter, J. M. Zhang, D. Houdeau, and A. Steckenborn, “Determination of Young's moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, 35, pp. 153-159, 1992.
[21] C. L. Muhlstein, S. B. Brown, and R. O. Ritchie, “High-Cycle Fatigue of Polycrystalline Silicon Thin Films in Laboratory Air,” Mat. Res. Soc. Symp. Proceeding, 657, 2001.
[22] R. R. Craig, Jr., Mechanics of Materials, 2nd edition, John Wiley & Sons, 1999.
[23] 鄒慶福, “平坦微機械結構之設計、製造與測試,” 國立清華大學動機系博士論文, 2003.
[24] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacement,” Journal of Micromechanical and Microengineering, 6, pp. 320-329, 1996.
[25] J.-L. A. Yeh, C.-Y. Hui, and N. C. Tien, “Electrostatic model for an asymmetric combdrive,” Journal of Microelectromechanical systems, 9, No.1, pp. 126-135, 2000.
[26] http://www.ee.ucla.edu/~wu/
[27] R. R. Craig, Jr., Mechanics of Materials, 2nd edition, John Wiley & Sons, 1999.
[28] http://www.memsnet.org/material/
[29] A. H. Nayfen, D. T. Mook, Nonlinear Oscillations, Wiley,1979.
[30] H.-H. Hu, and W. Fang, “A novel (111) single-crystal-silicon accelerometer using parallel-connected parallel plate capacitance” IEEE MEMS’04, Maastricht, Netherlands, 2004, pp. 597-600.
[31] http://www.iceweb.com.au/Analyzer/humidity_sensors.html
[32] http://www.irvine-sensors.com