研究生: |
張 碩 Zhang, Shuo |
---|---|
論文名稱: |
雙極式磁阻型解角器之優化設計與分析 Optimal Design and Analysis of Two-Pole Variable Reluctance Resolver |
指導教授: |
王培仁
Wang, Pei-Jen |
口試委員: |
李昇憲
王勝清 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 磁阻型解角器 、總諧波畸變率 、設計參數優化 |
外文關鍵詞: | Variable Reluctance Resolver, Total Harmonic Distortion, Design Parameter Optimization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
解角器結構比光學與磁性角度編碼器簡單,更能承受高溫環境與訊號干擾,被廣泛應用於較惡劣的工作環境,在航太、交通運輸及軍事領域之應用有不可取代的地位。傳統繞線轉子解角器精度高,但繞線結構複雜,製造及裝配需求高。磁阻型解角器因無轉子線圈,製造難度及成本低,機械結構堅固,使用壽命自然較長,近來大量應用於新能源汽車驅動電機之轉子位置反饋。
本論文針對雙極式磁阻型解角器進行詳細探討,首先分析解角器基本工作原理,建立整體磁路設計流程,並以商用磁阻型解角器為分析範例進行驗證。在確定基本幾何尺寸及材料性質後,使用電腦輔助工程分析軟體模擬定子齒槽結構、轉子凸極結構、激磁線圈與感應線圈繞線方式等,並設計及建立解角之數位訊號轉換器模型,解分析兩相感應電壓波形之包絡線與即時角度位置。其次討論此類型解角器結構、裝配以及轉速等因子對輸出訊號的影響,採用參數優化法降低系統諧波干擾,期望達成提升角度感測精度之目標。最後搭建解角器實驗測試平台,量測並分析兩相感應電壓訊號與解算結果,驗證模擬設計之可行性,旨在建立一套磁阻型解角器優化設計與分析之流程,為今後產品研發提供系統化之參考依據。
Since resolver is simple in structure compared to optical and magnetic type encoders, it has been widely used in harsh environments such as aerospace, transportation and military products with extra high-tolerance in electromagnetic interferences. Conventional wound-rotor type resolvers exhibit precision in angle measurement but more complex structure resulting in higher costs in manufacture and assembly. On the contrary, variable reluctance resolvers are low in manufacture costs plus services in longer life-span due to the simple and compact structure.
The objectives of this thesis are to design and analyze the two-pole type variable reluctance resolver employed for angle feedback in electric motors used for green-energy vehicles. First, the model of variable reluctance resolver and associated Resolver to Digital Converter are established by commercial simulation tools so that real-time rotor angle can be resolved with the use of two-phase induced-voltage sinusoids. Then, the prominent factors in geometry, assembly and the range of operational speed are discussed and optimized with design tools to improve the measurement accuracy in angle of the variable reluctance resolver. Finally, an experimental test bench was built to verify the VR resolver for simulations and analysis in voltage, demodulation and decoding of the sample VR resolver.
In the thesis study, a systematic design method with theoretical analysis and design parameter optimization can explore the fundamental theory in VR resolver and provide prominent references for industrial development of same type of products.
[1] R. Setbacken., “System performance and application tradeoffs determine the choice between encoders and resolvers in brushless servos” , Power Convers. Intell. Motion, vol. 22, no. 5, pp. 69-76, 1996.
[2] 許興斗、成煒,“淺析正餘弦旋轉變壓器的激磁補償繞組”,特微電機,36(12),pp.28-30,2009.
[3] Sun. L. Z., Zou. J. B., Lu. Y. P., “New variable-reluctance resolver for rotor-position sensing”, IEEE Region 10 Conference on Analog and Digital Techniques in Electrical Engineering, Chiang Mai, Thailand, 2004.
[4] Sun. L. Z., “Analysis and Improvement on the Structure of Variable Reluctance Resolvers”, IEEE Transactions on Magnetics, vol.44, no.8, pp.2002-2008, 2008.
[5] Ge. X., Zhu. Z. Q., Ren. R., Chen. J. T., “A Novel Variable Reluctance Resolver for HEV/EV Application”, IEEE Transactions on Industry Application, vol.52, no.4, pp.2872-2880, 2016.
[6] Liu. C. J., Qi. M., Zhao. M., “Analysis of Novel Variable Reluctance Resolver with Asymmetric Teeth on the Stator”, Mathematical Problems in Engineering, vol.2013, Article ID.958747, 2013.
[7] 冀睿琳,電動汽車用磁阻型旋轉變壓器的設計研究,天津大學碩士學位論文, 2014。
[8] 邢敬娓,新型磁阻型旋轉變壓器相關問題研究,哈爾濱工業大學碩士學位論文,2007。
[9] Hou C. C., Chiang Y. H., Lo C. P., “Experimental Verification of the Resolver Dynamic Model and Control Design” , IEEE 10th International Conference on Power Electronics and Drive Systems, Kitakyushu, Japan, pp.496-499, 2013.
[10] D. C. Hanselman, R. E. Thibodeau, D. J. Smith, “Variable-Reluctance Resolver Design Guidelines”, 15th Annual Conference of the IEEE Industrial Electronics Society, Philadelphia, Pennsylvania, pp.203-208, 1989.
[11] 王偉強,正弦形轉子軸向磁路旋轉變壓器的研究,哈爾濱工業大學碩士學位論文,2012。
[12] 孫立志及陸永平,“適於一體化電機系統的新結構磁阻旋轉變壓器的研究”,電工技術學報,1999。
[13] A. Ishizaki, K. Takasaki, S. Shimomura, K. Masaki and K. Kitazawa, “Theory and Characteristics of Novel Variable Reluctance 1X Resolver”, Electrical Engineering in Japan, vol.116, no.5, pp.128-137, 1996.
[14] 李婷婷,磁阻型旋轉變壓器的諧波分析與優化設計,哈爾濱工業大學碩士學位論文,2014。
[15] 徐家偉,感應式無刷解角器與解碼設計及分析,國立清華大學碩士論文,2014。
[16] Li W. T. and Huang S. R., “Variable-Reluctance Resolver Rotor Design Based on FEA and Matlab Co-Simulation”, IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Shanghai, China, 2015.
[17] 湯蘊璆,電機學第五版,機械工業出版社,2014。
[18] J. Szymczak., S. O’Meara., J. S.Gealon., C. N. De. La. Rama., “Precision Resolver-to-Digital Converter Measures Angular Position and Velocity”, Analog Dialogue, vol.48, 2014.
[19] 陳世坤,電機設計第二版,機械工業出版社,2000。
[20] 周凱、焦文良、王志宏、周永勤,“磁阻型旋轉變壓器繞組結構分析”,信息技術,2013。
[21] Kobayashi., M. O. Ota-ku., European Patent Application NO. EP1,503,487 A1, European Patent Office, 2005
[22] 黃堅及郭中醒,實用電機設計計算手冊,上海科學技術出版社,2010。
[23] K. Kitazawa., United States Patent NO. 5,757,182, Washington, DC: U.S. Patent and Trademark Office, 1998