簡易檢索 / 詳目顯示

研究生: 廖延宗
Yang Chung Liao
論文名稱: 完美的基板晶格匹配度對高溫超導薄膜的不良影響-晶格缺陷,雜相析出及超導性質的作用
The adverse effect of nearly perfect lattice matching substrates on high-temperature-superconductor thin film - the interplay between dislocations, precipitation and superconductivity
指導教授: 齊正中
Cheng Chung Chi
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 104
中文關鍵詞: 基板晶格應變非組分物質析出晶格缺陷超導薄膜尖塔狀的析出物晶界耦合約瑟生結的網絡模型
外文關鍵詞: Strain effect, precipitation of off-stoichiometric phases, dislocations, superconducting film, tower-like precipitates, intergranular coupling, network model of Josephson junctions
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從釔鋇銅氧化物(或大部分稀土元素取代釔的系統)被發現以來, 基板晶格應變對薄膜成長模式的效應已有相當的了解. 但一般文獻於應變對非組分物質析出的影響並無著墨. 作者透過一系列的實驗闡述晶格缺陷(如為舒解應變而產生的錯排)與非組分物質析出間的關係. 在嘗試了許多的成長條件後,我們發現EuBa2Cu3O7-δ和SmBa2Cu3O7-δ薄膜成長在完美晶格匹配的基板(鈦酸鍶)具有弱晶界耦合而相同的膜長在晶格匹配較差的基板其晶界耦合卻強了許多. 從這些膜的析出物密度及晶界耦合隨膜厚的演進,我們發現錯排及析出物有很密切的關係. 在基板晶格匹配較差的系統,超過臨界厚度所產生的錯排會吸引非組分物質因而生成尖塔狀的析出物. 這些析出物會更進一步地吸引晶界上的非組分物質. 因此這些物質不會均勻地分布在晶界上, 晶界耦合便好. 相反地,沒有那些一開始就引發的錯排的吸引,非組分物質會均勻地分布在晶界上. 這些物質會於晶粒形成超導後阻礙超導電流造成弱晶界耦合. 約瑟生結的網絡模型可以解釋我們所觀察到的現象. 這個弱晶界耦合的特性可能應用在製作約瑟生結的元件.


    Strain effect on the growth mode of high-temperature-superconductor (HTSC) (RBa2Cu3O7-d, R= Y and most rare earth elements) thin films has been investigated thoroughly since the discovery of this material. However the relationship between strain and the precipitation of off-stoichiometric phases has not been fully studied. Through a series of experiments, the author elucidates the interplay between the dislocations induced from the release of strain and the off-stoichiometric phases segregated out from the single crystal grains. Despite of many attempts to optimize the deposition conditions, we have found that there is always a substantial resistive tail below the bulk Tc of EuBa2Cu3O7-d and SmBa2Cu3O7-d films deposited on nearly perfect lattice matched SrTiO3 (STO) substrates. This is in contrast to the same films deposited on YSZ, LaAlO3 (LAO) and NdGaO3 (NGO) substrates under similar conditions. The films on YSZ, LaAlO3 and NdGaO3 substrates have a sharp resistive transition without any tails although the lattice match is poorer. The evolution of the precipitate density and intergranular coupling with increasing film thickness has been investigated for the films deposited on both nearly perfect matched and less matched substrates. It reveals that dislocations induced from the release of strain affect the precipitation of off-stoichiometric phases. We have developed a self-consistent scenario to explain this phenomenon. In this scenario, dislocations attract the off-stoichiometric phases and thus lead to tower-like precipitates. These tower-like precipitates further segregate the potential impurities out from the grain boundaries. Therefore the intergranular coupling of RBCO film deposited on the less lattice matched substrate is getting better with the increasing thickness. On the other hand, in the film grown on the nearly perfect matched substrate, the off-stoichiometric materials homogeneously coat each columnar grain in absence of these tower-like precipitates. A network model of Josephson junctions, which is composed of well-oriented (along all three axes) crystalline grains coated with non-superconducting materials of thickness of a few nm, can explain our experimental observation. This is a novel granular system different from the conventional one where the grains are misoriented with each other. This adverse effect for the transition temperature and intergranular coupling may find application in the fabrication of Josephson junctions.

    Abstract i Acknowledgement iii Figure list vii Table list ix 1 Introduction 1 (1.A) Physics of thin film growth 2 (1.A.1) Features evolved with thickness 2 (1.A.2) Precipitates formation 5 (1.A.3) The role of dislocations and strain in HTSC 7 (1.B) The granularity of HTSC 10 2 Thin film fabrication 14 (2.A) Target preparation 14 (2.B) Thin film deposition by PLD 15 (2.B.1) Principle 15 (2.B.2) Parameter optimization 16 (2.C) Deposition process 20 (2.C.1) Growing procedure 20 (2.C.2) Substrates 21 3 Characterization of physical properties 23 (3.A) Structure 23 (3.A.1) X-ray diffraction (XRD) 23 (3.A.2) Secondary ion mass spectroscopy (SIMS) 27 (3.B) Surface properties 29 (3.B.1) Optical microscopy 29 (3.B.2) Scanning electron microscopy 29 (3.B.3) Auger electron spectroscopy 35 (3.B.4) Atomic force microscopy 41 (3.C) Superconductive properties 53 (3.C.1) Resistive property 53 (3.C.2) Magnetic property 58 4 Strain-driven effect on the formation of precipitates 68 (4.A) Recovery of TC, R=0 of RBCO film on STO deposited by the bi-layer process 68 (4.B) The evolution with thickness 78 (4.B.1) AFM results 78 (4.B.2) XRD patterns 87 (4.B.3) The intergranular coupling evolved with thickness 88 5 Conclusion 96 References 101 Figure list (1) Static equilibrium of interface tension 3 (2) Thin-film-growth modes 3 (3) Pseudoternary phase diagram of YO1.5-BaO-CuO 6 (4.a) TC in different deposition conditions 18 (4.b, c) Deposition processes 19 (5) XRD patterns of EuBCO on NGO and STO 24 (6) XRD patterns of EuBCO on LAO and YSZ 25 (7) XRD pattern of clay 26 (8) SIMS of one-layer EuBCO on STO 28 (9) OM pictures of SmBCO on the four substrates 30 (10) The emission of secondary electron in different geometry 31 (11) SEM pictures of 180nm EuBCO film on LAO and STO 32 (12) SEM pictures of 60nm EuBCO film on LAO and STO 33 (13) The emission of Auger electron 37 (14) Auger electron spectrum for 180nm EuBCO film on LAO 38 (15) Auger electron spectrum for 60nm EuBCO film on LAO 39 (16) Microanalysis of Auger electron spectroscopy 40 (17) The set-up of AFM 42 (18) AFM pictures of 180nm EuBCO film on LAO and STO 43 (19) AFM pictures of 180nm EuBCO film on LAO and STO 44 (20) The line scan of Fig.19 (b) 45 (21) AFM pictures of 180nm EuBCO film on LAO and STO 46 (22) AFM pictures of 180nm EuBCO film on LAO and STO 47 (23) The line scan of Fig.22 (a) 48 (24) The line scan of Fig.22 (b) 49 (25) AFM pictures and their corresponded contour plots 50 (26) AFM pictures of 180nm EuBCO film on STO 51 (27) Normalized Rab(T) on different substrates 56 (28) Rab(T) on different substrates 57 (29) Normalized m(T) on different substrates 62 (30) Low field magnetic hysteresis 63 (31) M(T) in different magnetic field of SmBCO on STO 64 (32) M(T) in different magnetic field of SmBCO on NGO 65 (33) The modeling M(T) curve in different magnetic field 67 (34) Normalized Rab(T) of films by using different processes and substrates 71 (35) The XRD patterns of the films on STO by using the two different processes 72 (36) The normalized m(T) on different samples 74 (37) SIMS of films deposited by the bi-layer process 75 (38) AFM pictures of samples undergone the bi-layer process 76 (39) SEM/EDX analysis of the four samples 77 (40) AFM pictures of bare substrates 79 (41) AFM pictures of films on STO with different thickness 80 (42) AFM pictures of films on STO with different thickness 81 (43) AFM picture of 24nm film on STO 82 (44) AFM pictures of films on LAO with different thickness 83 (45) AFM pictures of films on LAO with different thickness 84 (46) AFM pictures of 24nm films on NGO and LAO 85 (47) The rocking curves of (005) of films on STO and LAO 90 (48) The evolution of TC and saturation of intergranular coupling 91 (49) The evolution with thickness of normalized m(T) curve of EuBCO on STO in the magnetic field of 1 Gauss 92 (50) The evolution with thickness of normalized m(T) curve of EuBCO on STO in the magnetic field of 10 Gauss 93 (51) The evolution with thickness of normalized m(T) curve of EuBCO on LAO in the magnetic field of 1 Gauss 94 (52) The evolution with thickness of normalized m(T) curve of EuBCO on LAO in the magnetic field of 10 Gauss 95 (53) The cartoon of evolution with thickness for RBCO on the less lattice matching substrate 99 (54) The cartoon of evolution with thickness for RBCO on the nearly perfect lattice matching substrate 100 Table list (1) Lattice constants and thermal expansion constants of different substrates at 300K 22 (2) Lattice mismatch of SmBCO with the four substrates……….22 (3) Δ2θand c-axis length of EuBCO c-axis-oriented films…….26 (4) The parameters used in the calculation of M(T)…………..…66 (5) Δ2θand c-axis length of EuBCO films by using two different processes

    References
    [1] J.R Kirtley et al, nature 373, 225 (1995)
    [2] J.M Triscone and O. Fischer, Rep. Prog. phys. 60, 1673 (197)
    [3] V.I Kudinov et al, Plys-Lett. A 151, 358 (1990) ; V.I. Kudinov et al, Phys Rev. 47, 9017 (1993)
    G. Nieva et al, Appl. phys. Lett. 60, 2159 (1992); C.L. Lin et al, Appl.
    Phys.Lett.71, 3284 (1997)
    [4] K.D. Tsuei, private communication
    [5] P. Chaudhari et al, Phys. Rev.Lett.60, 1653 (1988)
    [6] S.H. Tsai, Ph.D. thesis of National Tsing Hua University.
    [7] S. Tanaka, Physica C 282-287, xxxi (1997)
    [8] D.L. Smith, Thin-Film Deposition (McGraw. Hill, 1995), Ch5 and Ch6.
    [9] Xiang-Yang Zheng et al, Phys. Rev. B 45, 7584 (1992)
    [10] S.J. Pennycook et al, Physica C 202, 1 (1992)
    [11] T. Tsurumaki et al, Jpn. J. Appl. Phys. 35, L978 (1996)
    [12] M. Yeadon et al, J. Crystal Growth 172, 145 (1997)
    [13] B. Dam et al, Physica C 261, 1 (1996)
    [14] Q.D Jiang et al, Solid state commun., 98, 157 (1996)
    [15] S.Y Hou et al, Appl. Phys. Lett. 62, 3201 (1993)
    [16] J.P Gong et al, Phys. Rev. B 50, 3280 (1994)
    [17] Y.J. Tian et al, Appl. Phys. Lett. 65 ,234 (1994)
    [18] J.P Locquet et al, Appl. Phys. Lett. 63, 1426 (1993)
    [19] N. Kanda et al, Phys. Rev. B 56, 8419 (1997)
    [20] B.T. Ahn et al, Physica C 169, 529 (1990)
    [21] J. Zhao et al, Appl. Phys. Lett. 58, 2839 (1991)
    [22] R.K Singh et al, Appl. Phys. Lett. 61, 483 (1992)
    [23] F.E Eieckam et al, Appl. Phys. Lett. 71, 776 (1997); ibid 70, 1685 (1997)
    [24] There is an interesting discussion in Science 261, 1521 (1993)
    [25] However some researchers proposed that the optimal size of pining center is governed by penetration depth. See N. Takezawa and K. Fukushima, Physica c 228, 149 (1994); ibid 290, 31 (1997)
    [26] D.A Huse et al, Nature 358, 553 (1992); G.W. Crabtree and D.R Nelson, Phys. Today April, 38 (1997)
    [27] C.Gerber et al, Nature 350, 279 (1991); M. Hawley et al, Science 251, 1587 (1991)
    [28] C.P. Poole, Jr. et al, Superconductivity (Academic Press 1995), 392
    [29] M. Muralidhar et al, Appl. Phys. Lett. 76, 91 (2000)
    [30] H. Dai et al, Science 265, 1552 (1994); L. Civale, Supercond. Sci. Technol 10, A 11 (1997)
    [31] D.H. Lowndes et al, Phys. Rev. Lett. 74, 2355 (1995)
    [32] P. Yang and C.M Lieber, Science 273, 1836 (1996)
    [33] B. Dam et al, Nature 399, 439 (1999); J.M. Huijbregtse et al, Phys. Rev. B 62, 1338 (2000)
    [34] Zhigang Zou et al, Phys. Rev. Lett. 80, 1074 (1998)
    [35] R. Fehrenbacher and T.M Rice. Phys. Rev. Lett. 70, 3471 (1993)
    [36] J.P Locquet et al, Nature 394, 453 (1998)
    [37] G.L. Belenky et al, Phys Rev. B 44, 10117 (1991)
    [38] S. Senoussi et al, Phys. Rev B36, 4003 (1987)
    [39] J. Mannhart et al, Science 245, 839 (1987)
    [40] D. Dimos et al, Phys. Rev. Lett. 61, 219 (1988)
    [41] M.F. Chisholm and S.J Pennycook, Nature 351, 47 (1991)
    [42] D.M Kroeger et al, J. Appl. Phys. 64, 331 (1988)
    [43] S. E. Babcock and D.C. Larbalestier, Appl. Phys. Lett. 55, 393 (1989)
    [44] J.R Clem, Physica C 153-155, 50 (1988)
    [45] D. Dimos etal, Phys. Rev. B41, 4038 (1990)
    [46] J. Mannhart et al, Phys. Rev. Lett 61, 2476 (1988)
    [47] E. Babic et al, Phys. Rev. B 43, 1162 (1991)
    [48] J.R Clem et al, Phys. Rev. B35, 6337 (1987)
    [49] H. Parhmaoui and J. Jung, Phys. Rev. B 53, 14621 (1996)
    [50] H. Yan et al, Phys. Rev. B 61, 11711 (2000)
    [51] J.L Cardoso and P. Pereyra, Phys. Rev. B 61, 6360 (2000)
    [52] M. Tinkham, Int. to superconductivity 2nd ed (McGraw-Hill 1996)
    [53] I.R Waldram, Superconductivity of Meals and Cuprates (IOP 1996)
    [54] G. Deutscher and A Muller, Phys. Rev. Lett. 59, 1745 (1987)
    [55] G. Deutscher and P. Chaudhari, Phys. Rev. B 44, 4664 (1991)
    [56] 材料分析, 汪建民主編.
    [57] J.Cheung and J. Horwitz, MRS Bulletin (1992), 30
    [58] R. K. Singh et al, J. Appl. Phys. 68, 233 (1990)
    [59] M. Strikovski and J. H. Miller. Jr, Appl. Phys. Lett. 73, 1733 (1998)
    [60] B. Dam et al, Appl. Phys. Lett. 65, 1581 (1994)
    [61] R. K. Singh, Appl. Phys. Lett. 57, 2022 (1992); ibid 61, 483 (1992)
    [62] N. G Chew et al, Appl. Phys. Lett. 57, 2016 (1990)
    [63] J. Zhao et al, Appl. Phys. Lett. 58, 2839 (1991)
    [64] J. Borck et al, Physica C 213, 145 (1993)
    [65] A. Eulenburg et al, Physica C 312, 91 (1999)
    [66] T. B. Lindemer et al, J. Am. Ceram. Soc. 72, 1775 (1989)
    [67] M. Guillaume et al, J. Phys: Condens. Matter. 6, 7963 (1994)
    [68] P.95 at ref. [28]
    [69] J. G. Wen, et al, Physica C 218, 29 (1993)
    [70] J. Kim et al, J. Mater. Res. 15, 596 (2000)
    [71] B. Batlogg et al, Physica C 235-240, 130 (1994)
    [72] J. Clem and Z. Hao, Phys. Rev. B 48, 13774 (1993)
    [73] J. L. Chen and T.J. Yang, Physica C 224, 345 (1994)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE