研究生: |
何佩俞 Ho, Pei-Yu |
---|---|
論文名稱: |
以代謝物指紋圖譜區別紅茶產源 Discriminate the geographical origins of black tea by metabolite fingerprint profiles |
指導教授: |
凌永健
Ling, Youg-Chien |
口試委員: |
黃賢達
傅明仁 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 紅茶 、產源鑑定 、氣相層析質譜儀 、高效液相層析儀 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
產地是消費者選購茶葉考量的因素之一,進口茶葉假冒台灣茶葉事件層出不窮,為保障農民權益與提升消費者購買台灣茶葉信心,以科學方法輔助產源鑑定勢在必行。本研究使用高效液相層析儀及氣相層析質譜儀兩種儀器建立代謝物指紋圖譜,區別台灣魚池鄉、越南、印度、印尼、斯里蘭卡等五個不同產地的紅茶。高效液相層析儀之待測物為沒食子酸、5種兒茶素(兒茶素、表兒茶素、表沒食子兒茶素、表沒食子兒茶素沒食子酸酯、表兒茶素沒食子酸酯)及2種生物鹼(咖啡因、可可鹼)共8個次級代謝物,以此進行判別分析正確率為91.3%。使用氣相層析質譜儀進行之研究,應用代謝組學研究方法,待測物為以甲醇、水、氯仿混合溶液萃取分液後所得之所有極性代謝物(主要為初級代謝物)。根據判別分析結果提出以有機酸作為茶葉產源指標,以9種有機酸為變數進行判別分析的正確率為95.7%。本研究證實以代謝物指紋圖譜區別產地之可行性。
82
54. Morita, A.; Fujii, Y.; Yokota, H., Effect of aluminium on exudation
of organic acid anions in tea plants. In Plant Nutrition, Horst, W. J.;
Schenk, M. K.; Bürkert, A.; Claassen, N.; Flessa, H.; Frommer, W. B.;
Goldbach, H.; Olfs, H. W.; Römheld, V.; Sattelmacher, B.; Schmidhalter,
U.; Schubert, S.; Wirén, N.; Wittenmayer, L., Eds. Springer Netherlands:
2002; Vol. 92, pp 508-509.
55. Wong, M. H.; Fung, K. F.; Carr, H. P., Aluminium and fluoride
contents of tea, with emphasis on brick tea and their health implications.
Toxicol Lett 2003, 137, (1-2), 111-120.
56. Chen, L. S.; Lin, Z. H.; Chen, R. B.; Zhang, F. Z.; Jiang, H. X.; Tang,
N.; Smith, B. R., Root release and metabolism of organic acids in tea
plants in response to phosphorus supply. J Plant Physiol 2011, 168, (7),
644-652.
57. Hong, Y. S.; Son, H. S.; Hwang, G. S.; Kim, K. M.; Ahn, H. J.; Park,
W. M.; Van Den Berg, F.; Lee, C. H., Metabolomic Studies on
Geographical Grapes and Their Wines Using (1)H NMR Analysis
Coupled with Multivariate Statistics. J Agr Food Chem 2009, 57, (4),
1481-1490.
58. Scharbert, S.; Hofmann, T., Molecular definition of black tea taste
by means of quantitative studies, taste reconstitution, and omission
experiments. J Agr Food Chem 2005, 53, (13), 5377-5384.
59. Sanderso.Gw; Graham, H. N., Formation of Black Tea Aroma. J Agr
Food Chem 1973, 21, (4), 576-585.
60. Roberts, G. R.; Sanderso.Gw, Changes Undergone by Free
Amino-Acids during Manufacture of Black Tea. J Sci Food Agr 1966, 17,
(4), 182-&.
61. 殷裕勝. 氣相層析同位素比質譜儀應用於茶葉製造過程及產源
鑑定之研究. 國立清華大學碩士論文, 2006.
81
review. Trends Food Sci Tech 2009, 20, (11-12), 557-566.
45. Fiehn, O.; Kopka, J.; Dormann, P.; Altmann, T.; Trethewey, R. N.;
Willmitzer, L., Metabolite profiling for plant functional genomics. Nat
Biotechnol 2000, 18, (11), 1157-1161.
46. Fiehn, O.; Kopka, J.; Trethewey, R. N.; Willmitzer, L., Identification
of uncommon plant metabolites based on calculation of elemental
compositions using gas chromatography and quadrupole mass
spectrometry. Anal Chem 2000, 72, (15), 3573-3580.
47. Pongsuwan, W.; Fukusaki, E.; Bamba, T.; Yonetani, T.; Yamahara, T.;
Kobayashi, A., Prediction of Japanese green tea ranking by gas
chromatography/mass spectrometry-based hydrophilic metabolite
fingerprinting. J Agr Food Chem 2007, 55, (2), 231-236.
48. Ku, K. M.; Choi, J. N.; Kim, J.; Kim, J. K.; Yoo, L. G.; Lee, S. J.;
Hong, Y. S.; Lee, C. H., Metabolomics Analysis Reveals the
Compositional Differences of Shade Grown Tea (Camellia sinensis L.). J
Agr Food Chem 2010, 58, (1), 418-426.
49. Taylor, J.; King, R. D.; Altmann, T.; Fiehn, O., Application of
metabolomics to plant genotype discrimination using statistics and
machine learning. Bioinformatics 2002, 18, S241-S248.
50. Valpuesta, V.; Botella, M. A., Biosynthesis of L-ascorbic acid in
plants: new pathways for an old antioxidant. Trends in plant science 2004,
9, (12), 573-577.
51. Tazaki, K.; Minamika.T; Yoshida, S., Alicyclic Acid Metabolism in
Plants .6. Metabolism of Quinate in Epicotyls of Pea-Seedlings. Bot Mag
Tokyo 1974, 87, (1005), 61-68.
52. Helsper, J. P.; Loewus, F. A., Metabolism of L-Threonic Acid in
Rumex-X-Acutus L and Pelargonium-Crispum (L) Lher. Plant Physiol
1982, 69, (6), 1365-1368.
53. Ong, C. N.; Xu, F. G.; Zou, L., Multiorigination of Chromatographic
Peaks in Derivatized GC/MS Metabolomics: A Confounder That
Influences Metabolic Pathway Interpretation. J Proteome Res 2009, 8,
(12), 5657-5665.
80
Gruner, S., Extraction of active ingredients from green tea (Camellia
sinensis): Extraction efficiency of major catechins and caffeine. Food
Chem 2006, 96, (4), 597-605.
35. Pan, X. J.; Niu, G. G.; Liu, H. Z., Microwave-assisted extraction of
tea polyphenols and tea caffeine from green tea leaves. Chem Eng
Process 2003, 42, (2), 129-133.
36. 肖文軍,唐和平,鞏志華,肖力爭,李適,劉仲華, 茶葉超聲波
輔助浸提研究. 茶葉科學 2005, 26, (1), 54-58.
37. Peng, L.; Song, X. H.; Shi, X. G.; Li, J. X.; Ye, C. X., An improved
HPLC method for simultaneous determination of phenolic compounds,
purine alkaloids and theanine in Camellia species. J Food Compos Anal
2008, 21, (7), 559-563.
38. Zeeb, D. J.; Nelson, B. C.; Albert, K.; Dalluge, J. J., Separation and
identification of twelve catechins in tea using liquid
chromatography/atmospheric pressure chemical ionization-mass
spectrometry. Anal Chem 2000, 72, (20), 5020-5026.
39. Labbe, D.; Tetu, B.; Trudel, D.; Bazinet, L., Catechin stability of
EGC- and EGCG-enriched tea drinks produced by a two-step extraction
procedure. Food Chem 2008, 111, (1), 139-143.
40. Su, Y. L.; Leung, L. K.; Huang, Y.; Chen, Z. Y., Stability of tea
theaflavins and catechins. Food Chem 2003, 83, (2), 189-195.
41. Hilal, Y.; Engelhardt, U., Characterisation of white tea - Comparison
to green and black tea. J Verbrauch Lebensm 2007, 2, (4), 414-421.
42. Lin, J. K.; Lin, C. L.; Liang, Y. C.; Lin-Shiau, S. Y.; Juan, I. M.,
Survey of catechins, gallic acid, and methylxanthines in green, oolong,
pu-erh, and black teas. J Agr Food Chem 1998, 46, (9), 3635-3642.
43. Koshiishi, C.; Ito, E.; Kato, A.; Yoshida, Y.; Crozier, A.; Ashihara, H.,
Purine alkaloid biosynthesis in young leaves of Camellia sinensis in light
and darkness. J Plant Res 2000, 113, (1110), 217-221.
44. Cevallos-Cevallos, J. M.; Reyes-De-Corcuera, J. I.; Etxeberria, E.;
Danyluk, M. D.; Rodrick, G. E., Metabolomic analysis in food science: a
79
Ceylon, Assam and Darjeeling teas. Z Lebensm Unters F A 1999, 208, (4),
277-281.
24. Pilgrim, T. S.; Watling, R. J.; Grice, K., Application of trace element
and stable isotope signatures to determine the provenance of tea
(Camellia sinensis) samples. Food Chem 2010, 118, (4), 921-926.
25. Chen, S.-y., 多變量分析. 華泰書局: Tai nan shi; Tai bei shi, 2005.
26. Fisher, R. A., The use of multiple measurements in taxonomic
problems. Ann Eugenic 1936, 7, 179-188.
27. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Instrumental analysis.
Brooks/Cole, Cengage Learning: India, 2007.
28. Khokhar, S.; Venema, D.; Hollman, P. C. H.; Dekker, M.; Jongen, W.,
A RP-HPLC method for the determination of tea catechins. Cancer Lett
1997, 114, (1-2), 171-172.
29. Lin, Y. S.; Tsai, Y. J.; Tsay, J. S.; Lin, J. K., Factors affecting the
levels of tea polyphenols and caffeine in tea leaves. J Agr Food Chem
2003, 51, (7), 1864-1873.
30. Wang, H. F.; Helliwell, K.; You, X. Q., Isocratic elution system for
the determination of catechins, caffeine and gallic acid in green tea using
HPLC. Food Chem 2000, 68, (1), 115-121.
31. Zuo, Y. G.; Chen, H.; Deng, Y. W., Simultaneous determination of
catechins, caffeine and gallic acids in green, Oolong, black and pu-erh
teas using HPLC with a photodiode array detector. Talanta 2002, 57, (2),
307-316.
32. Wang, H. F.; Provan, G. J.; Helliwell, K., HPLC determination of
catechins in tea leaves and tea extracts using relative response factors.
Food Chem 2003, 81, (2), 307-312.
33. Bazinet, L.; Labbe, D.; Tetu, B.; Trudel, D., Catechin stability of
EGC- and EGCG-enriched tea drinks produced by a two-step extraction
procedure. Food Chem 2008, 111, (1), 139-143.
34. Perva-Uzunalic, A.; Skerget, M.; Knez, Z.; Weinreich, B.; Otto, F.;
78
12. NATIONS, F. A. A. O. O. T. U. http://faostat.fao.org/ (6/24),
13. 國際貿易局 http://cus93.trade.gov.tw/FSCI/
14. 農糧署 http://www.afa.gov.tw/GrainStatistics
15. Luypaert, J.; Zhang, M. H.; Massart, D. L., Feasibility study for the
use of near infrared spectroscopy in the qualitative and quantitative
analysis of green tea, Camellia sinensis (L.). Anal Chim Acta 2003, 478,
(2), 303-312.
16. Liu, S. L.; Tsai, Y. S.; Ou, A. S. M., Classifying the Variety,
Production Area and Season of Taiwan Partially Fermented Tea by Near
Infrared Spectroscopy. J Food Drug Anal 2010, 18, (1), 34-43.
17. Lee, J. E.; Lee, B. J.; Chung, J. O.; Hwang, J. A.; Lee, S. J.; Lee, C.
H.; Hong, Y. S., Geographical and Climatic Dependencies of Green Tea
(Camellia sinensis) Metabolites: A H-1 NMR-Based Metabolomics Study.
J Agr Food Chem 2010, 58, (19), 10582-10589.
18. Fernandez, P. L.; Pablos, F.; Martin, M. J.; Gonzalez, A. G., Study of
catechin and xanthine tea profiles as geographical tracers. J Agr Food
Chem 2002, 50, (7), 1833-1839.
19. 成浩、王麗鴛、周健、劉翊、陸文淵, 基於化學指紋圖譜的綠茶
原料品種判別分析. 中國農業化學 2008, 41, (8), 2413-2418.
20. Kodama, S.; Ito, Y.; Nagase, H.; Yamashita, T.; Kemmei, T.;
Yamamoto, A.; Hayakawa, K., Usefulness of catechins and caffeine
profiles to determine growing areas of green tea leaves of a single variety,
Yabukita, in Japan. J Health Sci 2007, 53, (4), 491-495.
21. Marcos, A.; Fisher, A.; Rea, G.; Hill, S. J., Preliminary study using
trace element concentrations and a chemometrics approach to determine
the geographical origin of tea. J Anal Atom Spectrom 1998, 13, (6),
521-525.
22. Dunbar, J.; Wilson, A. T., Determination of Geographic Origin of
Caffeine by Stable Isotope Analysis. Anal Chem 1982, 54, (3), 590-592.
23. Weinert, B.; Ulrich, M.; Mosandl, A., GC-IRMS analysis of black 1. 林木泰, 台灣的茶葉. 遠足文化: 2009.
2. Development, E. C. A. a. R. http://ec.europa.eu/agriculture/quality/
3. Taiz, L.; Zeiger, E., Plant physiology. Sinauer Associates:
Sunderland, Mass., 2002.
4. 磯淵猛, 紅茶瘋-從中國、英國到全世界. 麥田: 2009.
5. Vuong, Q. V.; Golding, J. B.; Nguyen, M.; Roach, P. D., Extraction
and isolation of catechins from tea. J Sep Sci 2010, 33, (21), 3415-3428.
6. Stalikas, C. D., Extraction, separation, and detection methods for
phenolic acids and flavonoids. J Sep Sci 2007, 30, (18), 3268-3295.
7. Higdon, J. V.; Frei, B., Tea catechins and polyphenols: Health effects,
metabolism, and antioxidant functions. Crit Rev Food Sci 2003, 43, (1),
89-143.
8. Yang, Y.; Kowalczyk, J.; Trinnaman, L., A Non-Volatile Study of
Teas Using Modern Analytical and Sensory Techniques. In Flavors in
Noncarbonated Beverages, American Chemical Society: 2010; Vol. 1036,
pp 33-43.
9. Del Rio, D.; Stewart, A. J.; Mullen, W.; Burns, J.; Lean, M. E. J.;
Brighenti, F.; Crozier, A., HPLC-MSn Analysis of Phenolic Compounds
and Purine Alkaloids in Green and Black Tea. J Agr Food Chem 2004, 52,
(10), 2807-2815.
10. Chen, Q.; Mou, S.; Hou, X.; Ni, Z., Simultaneous determination of
caffeine, theobromine and theophylline in foods and pharmaceutical
preparations by using ion chromatography. Anal Chim Acta 1998, 371,
(2-3), 287-296.
11. EkborgOtt, K. H.; Taylor, A.; Armstrong, D. W., Varietal differences
in the total and enantiomeric composition of theanine in tea. J Agr Food
Chem 1997, 45, (2), 353-363.