簡易檢索 / 詳目顯示

研究生: 卓君珮
Cho, Chun-Pei
論文名稱: 八羥奎林鋁鹽奈米材料之熱處理及其結構轉變與光電性質研究
On heat treatment of nanostructured AlQ3 - Structural transformation, field emission and photoluminescence
指導教授: 彭宗平
Perng, Tsong-Pyng
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 184
中文關鍵詞: 八羥奎林鋁鹽奈米球奈米線薄膜熱處理結構轉變場發射光激發光
外文關鍵詞: AlQ3, nanoparticle, nanowire, thin film, heat treatment, Structural transformation, field emission, photoluminescence
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 八羥奎林鋁鹽(AlQ3)之無晶奈米球及奈米線可在鈍氣中以氣相冷凝法製備之。奈米球之尺寸及尺寸分佈範圍皆可隨氦氣壓力降低而變小,而較細長及較高聚集密度之奈米線可在較低之氬氣壓力下得到。因尺寸越小之奈米球具有越大的比表面積,故其光激發光強度比AlQ3薄膜或粉末更強,較高聚集密度之奈米線具有較多之光吸收,亦可有較強之光激發光。表面具有許多奈米突起之AlQ3類無晶薄膜可在真空中以氣相冷凝法製備之,類無晶薄膜不但有場發射性質且具有低啟始電場,其啟始電場範圍在2 V/μm到12 V/μm之間。無晶奈米線亦具有場發射性質及低啟始電場,其啟始電場範圍在3 V/μm到20 V/μm之間。當AlQ3奈米結構具有較小直徑或較大厚度時,能夠有較大之幾何場增強效應,進而得到較佳之場發射。與大部分的一維無機奈米結構和鑽石薄膜相較之下,AlQ3奈米結構顯現了較佳之場發射行為,是極具潛力之發射極材料。於類無晶奈米突起之實際直徑與計算所得直徑之間存在一線性關係,此線性證實了AlQ3類無晶薄膜之表面粗糙度確實對場發射效能有重要影響。
    以單一步驟之熱處理方法可直接由AlQ3無晶奈米球或薄膜中長出結晶質奈米線。一系列之系統性熱處理實驗發現150oC和190oC間的熱處理溫度最適合長出細長之結晶質奈米線,提高熱處理溫度和增長熱處理時間皆可促進結晶質奈米線的成長及其結構轉變。結晶質奈米線主要是由α相結晶所構成,且其相轉變可以成核成長及分子遷移機制解釋之。在無晶奈米球轉變為結晶質奈米線的過程中可觀察到兩個相轉換,第一個是由無晶轉為γ相,第二個是由γ相轉變為α相,此兩相轉換之活化能亦可由Kissinger方法求得,分別為9.7 kJ/mol和 12.1 kJ/mol。由於無晶奈米球具有較大表面能,故其結晶化可在低於玻璃轉換溫度之下的溫度發生,無晶奈米球之其他相轉換溫度亦有降低現象,也可歸因於其具有較大表面能之故。熱處理後可觀察到AlQ3奈米結構的光激發光譜藍移及強度增大,推測其原因可能是結晶化造成更多Rayleigh散射以及在熱處理下優先形成之α相結構。熱處理後所引起的結晶質奈米線雜亂成長及不均勻表面造成場發射性能變差,熱處理後之晶界減少,導致場發射電子之傳輸管道變少,亦不利於結晶質奈米線之場發射效能。


    AlQ3 amorphous nanoparticles and nanowires can be fabricated under a cold trap of liquid nitrogen by vapor condensation in inert gases. Both diameter and size distribution of nanoparticles decrease with decreasing the He pressure. Longer, thinner and higher congregate nanowires are obtained at lower Ar pressure. Larger specific surface area of smaller nanoparticles and higher density of nanowires lead to a stronger PL intensity than those of commercial powder and thin film. Quasi-amorphous AlQ3 thin film with nanoprotrusions on the surface can also be fabricated by vapor condensation in vacuum and exhibits a low turn-on field of 2 V/μm to 12 V/μm. Amorphous nanowires also exhibit a low turn-on field of 3 V/μm to 20 V/μm. Both larger thickness of nanostructured AlQ3 and a smaller diameter of nanoprotrusions lead to a larger geometric enhancement for field emission. Compared with most inorganic 1D and diamond film emitters, nanostructured AlQ3 shows a superior field emission characteristic and stands for a promising cathode emitter. A linear relationship between calculated and actual radius of nanoprotrusions demonstrates that surface roughness of thin film has a significant influence on the efficiency of field emission.
    By a one-step heat treatment, crystalline AlQ3 nanowires can grow directly from amorphous nanoparticles and film. Systematic heat treatment demonstrates that temperatures between 150oC and 190oC are the most appropriate to form fine and long nanowires. Both higher heating temperature and longer heating time promote the growth and lead to more complete transformation. The crystalline nanowires are α-phase predominant, and the growth can be explained by nucleation and molecular migration that is dictated by anisotropic nature of α-AlQ3. Two phase transitions are observed in the transformation process. The first one is a transition from amorphism to γ□phase and the second one is a transition from γ□to α□phase. By Kissinger’s method, the activation energies for the two phase transitions are first time calculated to be 9.7 and 12.1 kJ/mol, respectively. The crystallization below the glass transition temperature and the lowering of phase transition temperatures are attributed to larger surface energy of amorphous nanoparticles. A blue shift and enhanced photoluminescence after heat treatment can be ascribed to more efficient Rayleigh scattering and preferentially formed α phase. Heat treatment is detrimental to field emission property because the random growth, unequal distribution of nanowires and an uneven and scraggly surface reduce effective emitters and cause non-uniform electron emission. The decreased grain boundaries after heat treatment reduce the number of transport channels for emitting electrons, resulting in worse field emission.

    Table of Contents 謝誌 中文摘要 Abstract (英文摘要) Chapter 1 Introduction ------------------------------------------------ 1 1.1 Nanotechnology --------------------------------------------------- 1 1.2 Nanostructures ----------------------------------------------------- 2 1.3 Properties of Nanostructures ------------------------------------ 3 1.3.1 Quantum dots -------------------------------------------------- 3 1.3.2 Quantum confinement ------------------------------------------ 4 1.3.2.1 Two-dimensional systems --------------------------------- 7 1.3.2.2 One-dimensional systems (quantum wires) ------------- 8 1.3.2.3 Zero-dimensional systems (quantum dots) ------------- 10 1.3.3 Optical properties -------------------------------------------- 12 1.3.4 Electrical transport properties ------------------------------ 12 1.3.5 Surface effect ------------------------------------------------- 18 Chapter 2 Nanomaterials -------------------------------------------- 19 2.1 Zero-dimensional (0D) Nanomaterials ------------------------ 19 2.1.1 Formation of nanoparticles --------------------------------- 19 2.1.2 Core/shell nanocrystals ------------------------------------- 22 2.1.3 Metal nanoparticles ----------------------------------------- 24 2.1.4 Applications of nanoparticles ------------------------------ 25 2.2 One-dimensional (1D) Nanomaterials ------------------------ 27 2.2.1 Approaches for synthesis of 1D nanomaterials ---------- 27 2.2.2 Properties and applications of 1D nanomaterials ------- 36 Chapter 3 AlQ3 (tris (8-hydroxyquinoline) aluminum) ------- 44 3.1 AlQ3 in Organic Light-Emitting Diodes (OLEDs) --------- 44 3.2 Molecular and Electronic Structures of AlQ3 --------------- 49 3.3 Polymorphs of AlQ3 -------------------------------------------- 54 3.4 Thermal Properties of AlQ3 -------------------------------------- 58 3.5 Optical Properties of AlQ3 ------------------------------------- 60 3.6 Oriented Crystalline Property of AlQ3 Thin Film ---------- 63 3.7 Optoelectronic Characteristics of AlQ3 Nanostructures ------ 64 Chapter 4 Experimental Principles -------------------------------- 69 4.1 Principle of Vapor Condensation ------------------------------ 69 4.2 Principle of Photoluminescence ------------------------------- 72 4.3 Principle of Field Emission ------------------------------------- 78 4.3.1 Fowler-Nordheim equation and Fowler-Nordheim plot --------------------------------------- 78 4.3.2 Field enhancement factor ----------------------------------- 83 4.4 Principles of Thermal Analysis -------------------------------- 83 4.4.1 DSC analysis ------------------------------------------------- 83 4.4.2 Kissinger plot ------------------------------------------------ 85 Chapter 5 Experimental Procedures ----------------------------- 86 5.1 Vapor Condensation System ---------------------------------- 86 5.2 Pretreatment of Substrates ------------------------------------ 87 5.3 Preparation of AlQ3 Nanostructures and Thin Film -------- 88 5.4 Heat Treatment -------------------------------------------------- 90 5.5 Field Emission Scanning Electron Microscopy (FESEM) -- 90 5.6 Transmission Electron Microscopy (TEM) ----------------- 91 5.7 Atomic Force Microscopy (AFM) --------------------------- 91 5.8 Low Angle X-ray Diffraction (LAXRD) -------------------- 91 5.9 Photoluminescence (PL) --------------------------------------- 92 5.10 Field Emission -------------------------------------------------- 93 5.11 Thermal Analysis ----------------------------------------------- 96 Chapter 6 Results and Discussion --------------------------------- 97 6.1 AlQ3 Nanoparticles --------------------------------------------- 97 6.1.1 Fabrication of amorphous AlQ3 nanoparticles ---------- 97 6.1.2 Growth of amorphous AlQ3 nanoparticles ------------- 101 6.1.3 Photoluminescence of AlQ3 nanoparticles of various sizes -------------------------------------------- 101 6.1.4 DSC analysis on AlQ3 nanoparticles of various sizes -------------------------------------------- 103 6.1.5 Two phase transitions at low temperatures ------------ 106 6.1.6 Identification of phase transition ----------------------- 110 6.1.7 Activation energy for phase transition ----------------- 115 6.2 AlQ3 Nanowires ------------------------------------------------ 117 6.2.1 Fabrication of amorphous AlQ3 nanowires -------------- 117 6.2.2 Growth of amorphous AlQ3 nanowires ------------------- 121 6.2.3 Photoluminescence of amorphous AlQ3 nanowires ---------------------------------------------- 123 6.2.4 Field emission of amorphous AlQ3 nanowires ---------------------------------------------- 127 6.3 Nanostructured AlQ3 Thin Film ------------------------------ 136 6.3.1 Fabrication of nanostructured AlQ3 thin film ----------- 136 6.3.2 Field emission of nanostructured AlQ3 thin film ------- 139 6.4 Heat Treatment -------------------------------------------------- 146 6.4.1 Heat treatment on AlQ3 amorphous thin film ----------- 146 6.4.2 Heat treatment on AlQ3 amorphous nanoparticles -------- 153 6.4.3 Growth of crystalline nanowires from amorphous film --------------------------------------- 159 6.4.4 Growth of crystalline nanowires from amorphous nanoparticles ------------------------------------------------- 160 6.4.5 Enhanced PL and blue shift after heat treatment -------- 164 6.4.6 Field emission after heat treatment ----------------------- 164 Chapter 7 Conclusions ----------------------------------------------- 170 References --------------------------------------------------------------- 173

    1. (a) H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, New York 2000. (b) M. Shalaev, M. Moskovits, Nanostructured Materials: Clusters, Composites, and Thin Films, V. American Chemical Society, Wachington, DC 1997. (c) A. S. Edelstein, R. C. Cammarata, Nanomaterials : Synthesis, Properties, and Applications, Institute of Physics, Philadelphia, PA 1996.
    2. (a) A special issue on nanoscale materials, Acc. Chem. Res. 1999, 32. (b) P. Alivisatos, P. F. Barbara, A. W. Castleman, J. Chang, D. A. Dixon, M. L. Kline, G. L. McLendon, J. S. Miller, M. A. Ratner, P. J. Rossky, S. I. Stupp, M. I. Thompson, Adv. Mater. 1998, 10, 1297. (c) Special issue on nanostructured materials, Chem. Mater. 1996, 8, 1569. (d) G. A. Ozin, Adv. Mater. 1992, 4, 612.
    3. (a) R. Dagani, C&EN News 2000, October, 27. (b) W. Schulz, C&EN News 2000, May, 41. (c) A. Thiaville, J. Miltat, Science 1999, 284, 1939.
    4. G. Schmid, Nanoparticles : From Theory to Application, Institute of Inorganic Chemistry, University Duisburg-Essen, Germany 2004.
    5. J. J. Chiu, C. C. Kei, T. P. Perng, and W. S. Wang, Adv. Mater. 2003, 15, 1361.
    6. J. J. Chiu, W. S. Wang, C. C. Kei, C. P. Cho, T. P. Perng, P. K. Wei, and S. Y. Chiu, Appl. Phys. Lett. 2003, 83, 4607.
    7. J. J. Chiu, W. S. Wang, C. C. Kei, and T. P. Perng, Appl. Phys. Lett. 2003, 83, 347.
    8. (a) J. X. Huang, R. B. Kaner, J. Am. Chem. Soc. 2004, 126, 851. (b) H. Hasegawa, I. Kubota, S. Mashiko, Thin Solid Films 2003, 438, 352.
    9. (a) Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Heeger, Science 1999, 397, 414. (b) A. Noy, A. E. Miller, J. E. Klare, B. L. Weeks, B. W. Woods, J. J. DeYoreo, Nano Lett. 2002, 2, 109. (c) J. H. Lim, C. A. Mirkin, Adv. Mater. 2002, 14, 1474.
    10. P. W. Atkins, Physical Chemistry; 3rd edn., Oxford University Press : Oxford, 1986.
    11. (a) C. Kittel, Einführung in die Festköperphysik; 8th edn., R. Oldenbourg Verlag: München, Wien, 1989. (b) N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College: Phiadelphia, 1976.
    12. (a) C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706. (b) A. P. Alivisatos, Science 1996, 271, 933.
    13. J. H. Davies, The Physics of Low-Dimensional Semiconductors; Cambridge University Press: Cambridge, 1998.
    14. (a) C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics; 1st edn.; John Wiley & Sons: New York, 1997. (b) M. Karplus, R. N. Porter, Atoms and Molecules; 1st edn.; W. A. Benjamin, Inc.: New York, 1970.
    15. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals; Cambridge University Press: Cambridge, 1998.
    16. (a) T. Trindade, P. Obrien, N. L. Pickett, 2003, 13, 3843. (b) M. Gorsua, W. Nazarewicz, Phys. Stat. Sol. B 1974, 65, 193.
    17. (a) C. J. Gorter, Physica 1951, 17, 777. (b) I. Giaever, H. R. Zeller, Phys. Rev. Lett. 1968, 20, 1504. (c) H. R. Zeller, I. Giaever, Phys. Rev. 1969, 181, 791. (d) J. Lambe, R. C. Jaklevic, Phys. Rev. Lett. 1969, 22, 1371. (e) T. A. Fulton, G. J. Dolan, J. Phy. Rev. Lett. 1987, 59, 109. (f) J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, D. A. Antoniadis, Phys. Rev. Lett. 1989, 62, 583.
    18. (a) L. Langer et al. J. Mater. Res. 1994, 9, 927. (b) H. Dai, E. W. Wong, C. B. Lieber, Science 1996, 272, 523. (c) T. W. Ebbesen et al. Nature 1996, 382, 54.
    19. S. J. Tan et al. Nature 1997, 386, 474.
    20. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, R. E. Smalley, Science 1997, 275, 1922.
    21. E. V. Giessen, E. M. Blokhuis, D. J. Bukman, J. Chem. Phys. 1998, 108, 1148.
    22. H. W. Pollack, Materials Science and Metallurgy; 4th edn, Englewood Cliffs N. J. Prentice-Hall, 1998.
    23. (a) C. R. Berry, Phys. Rev. 1952, 88, 596. (b) P. A. Montano et al., Phys. Rev. B 1984, 30, 672. (c) H. Hofmeister, S. Thiel, M. Dubiel, E. Schurig, Appl. Phys. Lett. 1997, 70, 1694. (d) R. Lamber, S. Wetjen, N. I. Jaeger, Phys. Rev. B 1995, 51, 10968. (e) A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Science 1992, 256, 1425.
    24. (a) W. Thomson (Kelvin), Philos. Mag. 1871, 42, 448. (b) K. K. Nanda, F. E. Kruis, H. Fissan, Phys. Rev. Lett. 2002, 89, 256103. (c) K. K. Nanda, A. Maisels, F. E. Kruis, H. Fissan, S. Stappert, Phys. Rev. Lett. 2003, 91, 106102.
    25. A. Henglein, Ber. Bunsenges. Phys. Chem. 1982, 86, 301.
    26. (a) D. Duonghong, J. Ramsden, M. Grätzei, J. Am. Chem. Soc. 1982, 104, 2977. (b) J. Kuczynski, J. K. Thomas, Chem. Phys. Lett. 1982, 88, 445. (c) M. A. Fox, B. Lindig, C. C. Chem, J. Am. Chem. Soc. 1982, 104, 5828.
    27. (a) C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706. (b) X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343.
    28. (a) A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold, J. R. Heath, J. Phys. Chem. 1996, 100, 7212. (b) O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, A. J. Nozik, J. Phys. Chem. 1994, 98 4966. (c) A. A. Guzelian, U. Banin, A. V. Kadavanich, X. Peng, A. P. Alivisatos, Appl. Phys. Lett. 1996, 69, 1462.
    29. (a) M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, M. G. Bawendi, J. Chem. Phys. 1997, 106, 9869. (b) M. J. Eilon, T. Mokari, U. Banin, J. Phys. Chem. B 2001, 105, 12726.
    30. (a) X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc. 1997, 119, 7019. (b) D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano. Lett. 2001, 1, 207. (c) M. T. Harrison, S. V. Kershaw, A. L. Rogach, A. Kornowski, A. Eychmüller, H. Weller, Adv. Mater. 2000, 12, 123.
    31. (a) Y. W. Cao, U. Banin, J. Am. Chem. Soc. 2000, 122, 9692. (b) S. Wei, A. Zunger, Appl. Phys. Lett. 1998, 72, 2011.
    32. J. T. G. Overbeek, J. W. Goodwin, Colloidal Dispersions, Royal Society of Chemistry, London 1981, p. 1.
    33. (a) C. G. Blatchford, J. R. Campbell, J. A. Creighton, Surface Science 1982, 120, 435. (b) A. Duteil, R. Quéau, B. M. Chaudret, C. Roucau, J. S. Bradley, Chem. Mater. 1993, 5, 341.
    34. (a) K. Esumi, T. Tano, K. Torigoe, K. Meguro, Chem. Mater. 1990, 5, 564. (b) K. Esumi, N. Sato, K. Torigoe, K. Meguro, J. Colloid Interface Sci. 1992, 149, 295. (c) K. Esumi, O. Sadakane, K. Torigoe, K. Meguro, Colloids Surf. 1992, 62, 255.
    35. (a) B. G. Ershov, A. Henglein, J. Phys. Chem. 1993, 97, 3434. (b) B. G. Ershov, E. Janata, A. Henglein, Radiat. Phys. Chem. 1992, 39, 123. (c) A. Henglein, M. Guttierez, E. Janata, B. G. Ershov, J. Phys. Chem. 1992, 96, 4598.
    36. Hornyak et al., Chem. Eur. J. 1997, 3, 1951.
    37. (a) A. P. Alivisatos et al., Nature 1996, 382, 609. (b) C. A. Mirkin et al., Nature 1996, 382, 607.
    38. K. D. Hermanson et al., Science 2001, 294, 1082.
    39. (a) R. Resch et al., J. Phys. Chem. B 1999, 103, 3647. (b) R. Resch et al., Langmuir 1998, 14, 6613.
    40. (a) D. L. Kiein et al., Nature 1997, 389, 699. (b) T. Sato et al., J. Appl. Phys. 1997. 82, 696. (c) D. L. Kiein et al., Appl. Phys. Lett. 1996, 68, 2574.
    41. D. Gittnis et al., Nature 2000, 408, 67.
    42. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, Adv. Mater. 2003, 15, 353.
    43. (a) G. Fasol, Science 1998, 280, 545. (b) C. R. Martin, Science 1994, 266, 1994. (c) M. P. Zach, K. H. Ng, R. M. Penner, Science 2000, 290, 2120.
    44. (a) V. M. Cepak et al., Chem. Mater. 1999, 11, 1363. (b) V. M. Cepak et al., Chem. Mater. 1997, 9, 1065. (c) C. R. Martin et al., Adv. Mater. 1995, 7, 487. (d) P. Hoyer, Adv. Mater. 1996, 8, 857. (e) M. Nishizawa et al., Science 1995, 268, 700.
    45. (a) H. Masuda et al., Science 1995, 268, 1466. (b) C. A. Huber et al., Science 1994, 263, 800. (c) T. M. Whitney et al., Science 1993, 261, 1316. (d) H. Cao et al., Adv. Mater. 2001, 13, 1393. (e) X. Zhang et al., Adv. Mater. 2001, 13, 1238. (f) Y. Lei et al., Appl. Phys. Lett. 2001, 78, 1125. (g) S. A. Sapp et al., Chem. Mater. 1999, 11, 1183. (h) Z. Cai et al., J. Am. Chem. Soc. 1989, 111, 4138.
    46. (a) C. A. Mirkin et al., Nature 1996, 382, 607. (b) A. P. Alivisatos et al., Nature 1996, 382, 609. (c) K. D. Hermanson et al., Science 2001, 294, 1082.
    47. (a) Y. Yin et al., J. Am. Chem. Soc. 2001, 123, 8718. (b) Y. Yin et al., J. Am. Chem. Soc. 2003, 125, 2048.
    48. (a) R. Resch et al., J. Phys. Chem. B 1999, 103, 3647. (b) A. S. Dimitrov et al., Langmuir 1999, 15, 5257. (c) M. M. Burns et al., Science 1990, 249, 749. (d) M. Tanase et al., Nano Lett. 2001, 1, 155. (e) M. Trau et al., Nature 1995, 374, 437.
    49. (a) A. M. Morales et al., Science 1998, 279, 208. (b) Y. Wu, P. Yang, J. Am. Chem. Soc. 2001, 123, 3165. (c) T. J. Trentler et al., Science 1995, 270, 1791.
    50. (a) X. F. Duan, C. M. Lieber, Adv. Mater. 2000, 12, 298. (b) X. F. Duan, C. M. Lieber, J. Am. Chem. Soc. 2000, 122, 188. (c) A. M. Morales, C. M. Lieber, Science 1998, 279, 208. (d) Y. Wu, P. Yang, Chem. Mater. 2000, 12, 605. (e) C. C. Chen et al., J. Am. Chem. Soc. 2001, 123, 2791. (f) C. C. Chen, C. C. Yeh, Adv. Mater. 2000, 12, 738. (g) M. H. Huang et al., Adv. Mater. 2000, 13, 113.
    51. (a) X. G. Peng et al., Nature 2000, 404, 59. (b) V. F. Puntes et al., Science 2001, 291, 2115. (c) Z. L. Wang, J. Phys. Chem. B 2000, 104, 1153.
    52. (a) Y. Sun et al., Nano Lett. 2002, 2, 165. (b) Y. Sun et al., Adv. Mater. 2002, 14, 833. (c) Y. Sun et al., Chem. Mater. 2002, 14, 4736.
    53. (a) R. M. Penner et al., Science 1990, 250, 1118. (b) J. A. Rogers et al., Appl. Phys. Lett. 1997, 70, 2658. (c) H. Schmid et al., Appl. Phys. Lett. 1998, 72, 2379. (d) Z. Y. Li et al., Appl. Phys. Lett. 2001, 78, 2431.
    54. (a) J. H. Golden et al., Science 1996, 273, 782. (b) B. Gates et al., J. Am. Chem. Soc. 2000, 122, 12582. (c) K. H. Meyer et al., Helv. Chim. Acta 1937, 61, 1932. (d) L. Stryer, Biochemistrry, 3rd ed., W. H. Freeman and Company, New York 1988, p. 261. (e) B. Gates et al., Adv. Funct. Mater. 2002, 12, 219.
    55. (a) C. Wang et al., Inorg. Chem. Comm. 2001, 4, 339. (b) J. S. Miller et al., Prog. Inorg. Chem. 1976, 20, 1. (c) M. Hanack et al., Adv. Mater. 1994, 6, 819. (d) H. S. Nalwa, Appl. Organomet. Chem. 1990, 4, 91.
    56. (a) X. Duan et al., Nature 2001, 409, 66. (b) Y. Huang et al., Science 2001, 294, 1313. (c) D. H. Cobden et al., Nature 2001, 409, 32. (d) G. Y. Tseng et al., Science 2001, 294, 1293.
    57. Y. Huang et al., Science 2001, 291, 630.
    58. (a) W. A. de Heer et al., Science 1995, 270, 1179. (b) P. G. Collins et al., Appl. Phys. Lett. 1996, 69, 1969. (c) Q. Wang et al., ibid. 1998, 72, 2912. (c) Q. H. Wang et al., ibid. 1997, 70, 3308. (d) J. M. Bonard et al., ibid. 1998, 73, 918. (e) Y. Saito et al., Ultramicroscopy 1998, 73, 1.
    59. S. Fan et al., Science 1999, 283, 512.
    60. (a) M. Huang et al., Science 2001, 292, 1897. (b) Z. K. Tang et al., Appl. Phys. Lett. 1998, 72, 3270.
    61. J. C. Johnson et al., Nano Lett. 2002, 2, 279.
    62. J. Kong et al., Science 2000, 287, 622.
    63. (a) Y. Wu, P. Yang, Adv. Mater. 2001, 13, 520. (b) Y. Wu, P. Yang, Appl. Phys. Lett. 2000, 77, 43.
    64. (a) E. O. Hall, Proc. Phys. Soc. London B 1951, 64, 747. (b) N. J. Petch, J. Iron. Steel Inst. 1953, 174, 25.
    65. J. Schiøtz et al., Nature 1998, 391, 561.
    66. E. W. Wong et al., Science 1997, 277, 1971.
    67. P. Poncharal et al., Science 1999, 283, 1513.
    68. C. W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
    69. J. R. Sheats et al., Science 1996, 273, 884.
    70. J. Kido et al., Science 1995, 267, 1332.
    71. P. E. Burrows et al., J. Appl. Phys. 1996, 79, 7991.
    72. F. Papadimitrakopoulos et al., Syn. Metals. 1997, 85, 1221.
    73. F. Papadimitrakopoulos et al., Chem. Mater. 1996, 8, 1363.
    74. R. L. Martin et al., Phys. Rev. B 2000, 61, 15804.
    75. A. Curioni, W. Andreoni, J. Am. Chem. Soc. 1999, 121, 8216.
    76. (a) A. Curioni et al., Chem. Phys. Lett. 1998, 294, 263. (b) M. Amati, F. Lelj, Chem. Phys. Lett. 2002, 358, 144. (c) M. Amati, F. Lelj, Chem. Phys. Lett. 2002, 363, 451.
    77. K. Sugiyama et al., J. Appl. Phys. 1998, 83, 4928.
    78. M. Brinkmann et al., J. Am. Chem. Soc. 2000, 122, 5147.
    79. M. Cölle, W. Brütting, Phys. Stat. Sol. (a) 2004, 201, 1095.
    80. (a) M. Cölle et al., Chem. Commun. 2002, 23, 2908. (b) M. Cölle et al., Adv. Funct. Mater. 2003, 13, 108.
    81. L. S. Sapochak et al., J. Am. Chem. Soc. 2001, 123, 6300.
    82. K. Naito, A. Miura, J. Phys. Chem. 1993, 97, 6240.
    83. (a) M. Muccini et al., Syn. Metals 2001, 122, 31. (b) M. Brinkmann et al., Syn. Metals 2001, 121, 1499.
    84. (a) D. S. Qin et al., Appl. Phys. Lett. 2001, 78, 437. (b) J. M. Chung et al., Jpn. J. Appl. Phys. P1 2004, 43, 1631. (c) A. B. Djurišić et al., Appl. Phys. A 2004, 78, 375.
    85. (a) K. A. Higginson et al., Chem. Mater. 1998, 10, 1017. (b) F. Papadimitrakopoulos et al., IEEE. J. Sel. Top. Quant. 1998, 4, 49.
    86. (a) Y. Yoshida et al., Adv. Mater. 2000, 12, 1587. (b) Z. Bao et al., Adv. Mater. 1997, 9, 42. (c) J. H. Schön et al., Science 2000, 289, 599.
    87. J. F. Moulin et al., Adv. Mater. 2002, 14, 439.
    88. (a) K. W. Wong et al., Appl. Phys. Lett. 1999, 75, 2918. (b) F. G. Tarntair et al., Appl. Phys. Lett. 2000, 76, 2630. (c) S. H. Jeong Appl. Phys. Lett. 2001, 78, 2052.
    89. (a) I. Musa et al., Nature 1998, 395, 362. (b) J. C. She et al., Ultramicroscopy 1999, 79, 149. (c) J. C. She et al., Thin Solid Films 1999, 349, 225.
    90. (a) V. V. Zhirnov et al., J. Vac. Sci. Technol. B 2001, 19, 87. (b) W. A. de Heer et al., Science 1995, 270, 1179. (c) A. Rajagopal et al., J. Appl. Phys. 1998, 83, 2649.
    91. S. Kasukabe et al., Jpn. J. Appl. Phys. 1974, 13, 1714.
    92. S. G. Kim, J. R. Brock, J. Appl. Phys. 1986, 60, 509.
    93. S. Kasukabe et al., Jpn. J. Appl. Phys. 1972, 12, 1675.
    94. N. Wada, Jpn. J. Appl. Phys. 1968, 7, 1287.
    95. R. J. Curry, W. P. Gillin, J. Appl. Phys. 2000, 88, 781.
    96. S. Miyata, H. S. Nalwa, Organic Electroluminescence Materials and Devices, Gordon and Breach Science Publisher, Tokyo, 1997.
    97. R. Fowler, L.W. Nordheim, Proc. R. Soc. London 1928, 119, 173.
    98. E. L. Murphy, R. H. Good, Jr. Phys. Rev. 1956, 102, 1464.
    99. R. E. Burgess, H. Kroemer, Phys. Rev. 1953, 90, 515.
    100. V. V. Zhirnov et al., J. Vac. Sci. Technol. B 2001, 19, 87.
    101. E. W. Muller, J. Appl. Phys. 1955, 26, 732.
    102. F. G. Tarntair et al., Appl. Phys. Lett. 2000, 76, 2630.
    103. (a) H. E. Kissinger, J. Research Natl. Bur. Standards 1956, 57, 217. (b) H. E. Kissinger, Analyt. Chem. 1957, 29, 1702.
    104. C. L. Lee et al., Metall. Mater. Trans. A 2001, 32A, 1599.
    105. S. C. Kung, T. F. Kuo, B. J. Li, H. J. Lai, private.
    106. http://thermal-analysis.setaram.com/thermal-analysis/fiche_produit.aspx?id=80.
    107. R. A. Baxter, in Thermal Analysis, R. F. Schwenker, P. D. Garn, Eds., New York: Academic Press, 1969, 1, 68.
    108. (a) C. G. Granqvist, R. A. Buhrman, J. Appl. Phys. 1976, 47, 2200. (b) C. Kaito, Jpn. J. Appl. Phys. 1978, 17, 601. (c) S. Kasukabe, S. Yatsuya, R. Uyeda, J. Crystal Growth 1974, 24, 315.
    109. C. P. Cho, C. A. Wu, T. P. Perng, Adv. Funct. Mater. accepted 2005.
    110. (a) Y. Khan, E. Kneller, M. Sostarich, Z. Metallk. 1981, 72, 553. (b) Y. Khan, E. Kneller, M. Sostarich, Z. Metallk. 1982, 73, 624.
    111. H. E. Kissinger, Analyt. Chem. 1957, 29, 1702.
    112. (a) B. Z. Li, J. Y. Yu, S. W. Lee, M. H. Ree, Polymer 1999, 40, 5371. (b) S. L. Liu, T. S. Chung, Polymer, 2000, 41, 2781. (c) G. X. Chen, J. S. Yoon, J. Poly. Sci. B 2005, 43, 817.
    113. R. E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS-Kent Publishing, Boston, 1992, 444.
    114. H. Murakami et al., Appl. Phys. Lett. 2000, 76,1776.
    115. (a) S. Z. Deng et al., Chem. Phys. Lett. 2002, 356, 511. (b) Z. W. Pan et al., Adv. Mater. 2000, 12, 1186. (c) H. C. Lo et al., Appl. Phys. Lett. 2003, 83, 1420. (d) X. T. Zhou et al., Mater. Sci. Eng. 2000, 119, A286.
    116. F. G. Tarntair et al., Appl. Phys. Lett. 2000, 76, 2630.
    117. (a) C. J. Lee et al., Appl. Phys. Lett. 2002, 81, 3648. (b) Y. W. Zhu et al., Appl. Phys. Lett. 2003, 83, 144. (c) C. X. Xu, X. W. Sun, Appl. Phys. Lett. 2003, 83, 3806.
    118. H. M. Kim et al., Chem. Phys. Lett. 2002, 377, 491.
    119. (a) J. Chen et al., Appl. Phys. Lett. 2003, 83, 746. (b) C. T. Hsieh et al., Appl. Phys. Lett. 2003, 83, 3383. (c) Y. B. Li, Y. Bando, D. Golberg, Appl. Phys. Lett. 2003, 82, 1962.
    120. H. Murata, C. D. Merritt, Z. H. Kafafi, IEEE J. Select. Topics Quantum Electron 1998, 4, 119.
    121. J. J. Chiu, “Organic semiconductor nanostructures and their optoelectronic properties”, Ph.D. Thesis, National Taiwan University, 2003.
    122. J. Zhou et al., Adv. Mater. 2003, 15, 1539.
    123. Y. B. Li et al., Appl. Phys. Lett. 2003, 81, 5048.
    124. (a) W. Zhu, G. P. Kochanski, S. Jin, Science 1998, 282, 1471. (b) J. Chen et al., J. Appl. Phys. 2003, 94, 5429.
    125. C. P. Cho, C. Y. Yu, T. P. Perng, submitted to Appl. Phys. Lett. 2005.
    126. S. J. Wang et al., Nanotechnology 2005, 16, 273.
    127. (a) Y. L. Lee, W. C. Tsai, J. R. Maa, Appl. Surf. Sci. 2001, 173, 352. (b) J. Y. E et al., Appl. Surf. Sci. 2003, 205, 274.
    128. O. Gröning et al., Solid State Electron. 2001, 45, 929.
    129. (a) S. Y. Chen et al., Phys. Lett. A 2003, 313, 436. (b) J. Y. Shim et al., Diam. Relat. Mater. 2000, 9, 1506.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE