研究生: |
陳美芬 Mei-Fen Chen |
---|---|
論文名稱: |
微波輔助轉印微影 Microwave-Assisted Imprint Lithography |
指導教授: |
朱鐵吉
Tieh-Chi Chu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 毛細力 、微波 、轉印微影 |
外文關鍵詞: | capillary force, microwave, imprint lithography |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多奈米製造技術中,光學微影、電子束微影和轉印微影是經常用來製造奈米元件以及奈米結構的方法。而在1995年轉印微影就被提出可以用於製造奈米元件。如今,我們提出一種嶄新的方法,利用微波輔助轉印微影;讓微波加熱光阻使其溫度超過玻璃轉移溫度(Tg點),進而從固態變成融熔態,再利用毛細力讓光阻在模板空腔中成長出圖形。
本論文中我們利用微波的主要原因是其具有快速以及選擇性加熱的特性。不同的物質因本身散逸係數不同,吸收微波能量的效率也跟著不同。一些散逸係數較低的物質就不容易被微波加熱,如石英、聚二甲基矽氧烷(PDMS)等。相對的,一些散逸係數較高的物質如聚合物、光阻等,其容易吸收微波能量而達到加熱的效果。所以利用微波此種特性,我們可以讓光阻加熱,卻不使PDMS模板因加熱而變形。
本論文討論要點共分四部份,第一部分為不同光阻運用於微波輔助轉印微影之探討;第二部分為G-line光阻不同軟烤溫度的研究;第三部分探討不同的微波加熱時間與功率對實驗的影響;最後一部分將所求得的各項最佳化條件運用於微波輔助轉印微影製做出各種不同的圖形。
The novel nanofabrication technique such as photolithography, electron beam lithography and imprint lithography was used to manufacture nanodevices and nanostructures. Imprint lithography have been introduced to nanoscale structures fabrication for many years since 1995. Now, we develop a new microwave-accelerated molding method to deform the polymer, when the temperature is increased to the Tg, the resist will start to melt and deform by the mold shape due to capillary force interaction.
Microwave heating is a selective and rapid heating process for polar compound, and generally operates at 2.45 GHz. The absorption efficiency of microwave energy for different materials is dependent on the intrinsic dissipation factor. Lower dissipation factor, such as PDMS or quartz, are not easily heated by microwave irradiation. On the contrary, the high dissipation factor materials, such as polymer or resist can be effective heating.
This thesis contains four parts. First, we try to study the different resists which one is suitable for microwave-accelerated imprint lithography. Second, we investigate into various soft-baking temperatures for G-line resist. Third, using various heating time and power of microwave to test and to verify the accuracy of pattern in microwave-accelerated imprint lithography. Finally, we use different molds in microwave-accelerated imprint lithography to evaluate the integrity of patterns.
(1) Y. Chen and A. Pepin, "Nanofabrication: Conventional and nonconventional methods", Electrophoresis, 22, 187-207 (2001).
(2) S. Y. Chou, P. R. Krauss and P. J. Renstrom, "Nanoimprint lithography ", Journal of Vacuum Science & Technology B, 14(6), 4129-4133 (1996).
(3) S. Y. Chou and P. R. Krauss, "Imprint lithography with sub-10 nm feature size and high throughput", Microelectronic Engineering, 35(1-4), 237-240 (1997).
(4) B. Heidari, I. Maximov and L. Montelius, "Nanoimprint lithography at the 6 in. wafer scale", Journal of Vacuum Science & Technology B, 18(6), 3557-3560 (2000).
(5) A. Lebib, Y. Chen, J. Bourneix, F. Carcenac, E. Cambril, L. Couraud and H. Launois, "Nanoimprint lithography for a large area pattern replication", Microelectronic Engineering, 46(1-4), 319-322 (1999).
(6) S. Zankovych, T. Hoffmann, J. Seekamp, J. U. Bruch and C. M. S. Torres,
"Nanoimprint lithography: Challenges and prospects", Nanotechnology, 12(2), 91-95 (2001).
(7) K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp,
S. Zankovych and C. M. Sotomayor Torres, "Polymer stamps for nanoimprinting", Microelectronic Engineering, 61-62, 393-398 (2002).
(8) F. Gottschalch, S. Ishida, K. Suzuki, H. Hayashi, H. Watabe and Y. Arakawa,
"Light emission from individual InAs/GaAs self-assembled quantum dots excited by tunneling current injection ", Solid-State Electronics, 43, 1079-1083 (1999).
(9) Y. Xia and G. M. Whitesides, "Soft lithography", Angewandte Chemie International Edition, 37, 550-575 (1998).
(10) R. Xing, Z. Wang and Y. C. Han, "Embossing of polymers using a thermosetting polymer mold made by soft lithography", Journal of Vacuum Science & Technology B, 21(4), 1318-1322 (2003).
(11) K. Y. Suh and H. H. Lee, "Capillary force lithography: Large-area patterning, self-organization, and anisotropic dewetting", Advanced Functional Materials, 12(6-7), 405-413 (2002).
(12) J. C. L. Ottersy, W. Olthuis, P. H. Veltink and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications", Journal of Micromechanics and Microengineering, 7, 145-147 (1997).
(13) 紀柏享, "微波消化之方法與應用", Chemistry (The Chinese Chem. Soc. Taipei), 56(4), 269-284 (1998).
(14) M. Morra, E. Occhillo, R. Marola, F. Garbassi, P. Humphery and D. Jahnson, "On the aging of oxygen plasma-treated polydimethylsiloxane surfaces ", Jounrnal of Colliod and Interface Science, 137(1), 11-24 (1990).
(15) D. C. Duffy, O. J. A. Schueller, S. T. Brittan and G. M. Whitesides, "Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow", Journal of Micromechanics and Microengineering, 9, 211-217 (1999).
(16) Y. N. Xia, J. J. McClelland, R. Gupta, D. Qin, X. M. Zhao, L. L. Sohn, R. J. Celotta and G. M. Whitesides, "Replica molding using polymeric materials: A practical step toward nanomanufacturing", Advanced Materials, 9(2), 147-149 (1997).
(17) K. N. Tu, J. W. Mayer and L. C. Feldman, "Electronic Thin Film Science", 21-45, Macmillan, New York (1992).
(18) http://140.114.18.41/med/ch3.htm
(19) D. Myers, "Surface, Interface, and Colloids: Principles and Applications", Wiley, New York, 97-123 (1999).
(20) http://ce.sysu.edu.cn/Hope/elaborate/wulihuaxue/jiaoan/hp08.ppt
(21) H. M. Kingston and L. B. Jassie, "Introduction to microwave sample preparation", 7-31, American Chemical Society, U. S. (1988).
(22)許道平, "分析樣品前處理技術-微波萃取法", Chemistry (The Chinese Chem. Soc. Taipei) , 56(4), 285-294 (1998).
(23)金欽漢, 戴樹珊, 黃卡瑪, "微波化學", 科學出版社,台北, (2001).
(24) H. J. Kim and K. D. Kihm, "Application of a two-color laser induced fluorescence (LIF) technique for temperature mapping", ASME International Mechanical Engineering Congress and Exposition, 1-7 (2001).
(25)蘇清森主編, "儀器學 (Instrumentation)" ,頁71-72, 五南圖書出版股份有限公
司出版,台北市(2002).
(26) V. Romano, A. D. Zweig, M. Frenz, and H. P. Weber, "Time-resolved thermal microscopy with fluorescent films", Applied Physics letter, B49, 527-533 (1989).
(27) E. M. S. Castanheira and J. M. G. Martinho, "Solvatochromic shifts of pyrene excimer fluorescence", Chemical Physics Letters, 185, 319-323 (1991).
(28) E. M. S. Castanheira and J. M. G. Martinho, "Thermochromic shifts of pyrene excimer fluorescence", Chemical Physics Letters, 206, 45-48 (1993).
(29) I. L. Arbeloa and P. R. Ojeda, "Molecular forms of Rhodamine B", Chemical Physics Letters, 79, 347-350 (1981).
(30) J. Tsibouklis and R. J. Ewen, "Surface energy characteristics of polymer film structures: A further insight into the molecular design requirements", Langmuir, 15, 7076-7079 (1999).
(31) J. Long and P. Chen, "Surface characterization of hydrosilylated polypropylene:
Contact angle measurement and atomic force microscopy", Langmuir, 17, 2965-2972 (2001).
(32) 莊達人, "VLSI 製造技術", 頁293-296, 高立出版社,台北, (2002).
(33) D. Pisignano and R. Cingolani, "High temperature mircofluidic lithography", Advanced Materials, 14(21), 1565-1567 (2002).
(34) X. M. Han, J. Lin, R. B. Xing, J. Fu and S. B. Wang, "Patterning and optical properties rhodamine B-doped organic-inorganic silica films fabricated by sol-gel soft lithography", Material Letter, 57, 1355-1360 (2003).