簡易檢索 / 詳目顯示

研究生: 陳正賢
Chen, Jheng-Sian
論文名稱: 光學幫浦鉈原子6P3/2準穩態
Optical Pumping the Metastable State 6P3/2 of Atomic Thallium
指導教授: 劉怡維
Liu, Yi-Wei
口試委員: 施宙聰
Jow-Tsong Shy
周哲仲
Che-Chung Chou
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 43
中文關鍵詞: 原子束陰極中空放電管光學幫浦躍遷選擇規則
外文關鍵詞: Thallium, Tl, atomic beam, hollow cathode discharge lamp, selection rule
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近代精準原子光譜實驗中,鉈原子(Thallium, Tl)在驗證宇稱不守恒原理中扮演一個重要的角色。本論文主旨為研究鉈原子束系統中準穩態(metastable
    state)6P3/2與激發態(excited state)7S1/2間的躍遷,利用535nm雷射光源觀察原子被激發後所產生之雷射誘發螢光光譜;然而對鉈原子束系統中,在自然熱平衡分布下,由統計力學知主要原子數population皆集中在基態(ground state)6P1/2上,因此準穩態6P3/2上幾乎沒有原子,因此535nm螢光光譜的完成必須仰賴另一道377nm雷射光源的光學幫浦(optical pumping)效應,並利用躍遷選擇規則(selection rule)將原子從6P1/2能階經由lamda型能階系統轉移到特定的準穩態6P3/2超精細結構(hyperfine structure)能階上。本實驗利用755nm鈦藍寶石(Ti-Sapphire)雷射經倍頻共振腔產生377nm雷射作為光學幫浦效應之光源,同時利用1070nm摻銣釩酸釓晶體(Nd:GdVO4)雷射經摻氧化鎂週期反轉鈮酸鋰晶體(MgO doped periodicallypoled lithiumniobate, MgO:PPLN crystal)倍頻產生的535nm雷射作為螢光光譜的激發光源。利用377nm雷射作為選擇器激發某些超精細能階與同位素,本論文展示了原子束中每個躍遷的535nm解析光譜,也將其與陰極中空放電管中的無都普勒效應光譜作比較,上述結果可以用來作為未來鉈原子lamda型三能階雷射冷卻技術以及原子束與宇稱不守恒有關之高解析度1283nm M1躍遷光譜。


    In modern precision atomic spectroscopy, thallium(Tl) plays an important role in testing Parity Nonconservation(PNC). The purpose of this thesis is to study transition between metastable state 6P3/2 and excited state 7S1/2 in atomic beam of Tl using 535nm laser to observe laser-induced fluorescence spectrum from metastable atom. As the thermal distribution of atomic beam, the most population is at ground state 6P1/2, due to the large ground state fine structure splitting. There is nearly no population at 6P3/2 metastable state. To accomplish 535nm spectrum, it is needed
    optical pumping by 377nm laser to transfer atoms from 6P1/2 to specific energy level with the help of the selection rule. One of the light sources in the experiment is a 377nm laser which is frequency-doubled by a doubling cavity with 755nm Ti-Sapphire laser. The other is a 535nm laser which is also frequency-doubled by a MgO:PPLN with 1070nm Nd:GdVO4 laser. With the characteristics of exciting Tl atom to 7S1/2, 535nm laser can be an important light source of detecting if there is absorption resulting in weak E1-forbidden transition between 6P1/2 and 6P3/2. Using 377nm laser as a selector that optical pumped only some certain hyperfine levels and isotope, this thesis performs 535nm spectrum in atomic beam to clearly resolved all the transitions. We also compared these doppler-free spectrum with the hollow cathode discharge lamp (HCL). These results can be applied to the future experiments of lambda-type laser cooling of thallium and the high resolution atomic beam spectroscopy of the M1 transition of 1283nm for atomic parity violation measurement.

    第一章 前言與動機 1.1 前言 1.2 動機 第二章 基本原理 2.1 鉈原子及其能階 2.2 譜線線寬與增廣效應 2.2.1 自然線寬 2.2.2 都普勒線寬增廣 2.2.3 功率線寬增廣 2.2.4 壓力線寬增廣 2.2.5 原子束與陰極中空放電管線寬增廣效應比較 2.3 光學幫浦與躍遷選擇定律 2.3.1 躍遷選擇規則 2.3.2 光學幫浦 2.4 調制轉移 第三章 實驗裝置 3.1 377nm雷射系統 3.2 535nm雷射系統 3.2.1 1070nm雷射系統 3.2.2 535nm倍頻晶體 3.3 鉈原子束真空加熱腔 3.4 鉈原子陰極中空放電管 3.5 實驗架設 3.6 實驗方法 第四章 實驗結果與分析 4.1 鉈原子205Tl 6P3/2 F=1 與F=2 到7S1/2 F=1 在原子束與陰極中空放電管的光譜圖 4.2 鉈原子203Tl 6P3/2 F=1 與F=2 到7S1/2 F=1 在原子束與陰極中空放電管的光譜圖 4.3 鉈原子205Tl 6P3/2 F=1 到7S1/2 F=0 在原子束與陰極中空放電管的光譜圖 4.4 鉈原子203Tl 6P3/2 F=1 到7S1/2 F=0 在原子束與陰極中空放電管的光譜圖 4.5 535nm雷射功率對鉈原子束線寬影響 4.6 利用鉈原子陰極中空放電管之飽和吸收訊號將535nm雷射鎖頻 4.7 lamda型三能階EIT 第五章 結論與展望 參考文獻

    [1] T. D. Lee and C. N. Yang , “Question of Parity Conservation in Weak Interactions” Phys. Rev. 104, 254 (1956)
    [2] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, “Experimental Test of Parity Conservation in Beta Decay” Phys. Rev. 105, 1413 (1957)
    [3] M. A. Bouchiat and C. Bouchiat, “I. parity violation induced by weak neutral currents in atomic physic,” Phys. Lett. B48, 111 (1974).
    [4] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of Parity Nonconservation and an Anapole Moment in Cesium.” Science 275, 1759 (1997).
    [5] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, “High-precision calculation of parity nonconservation in cesium and test of the standard model” Phys. Rev. D 66, 076013 (2002).
    [6] P. A. Vetter, D. M. Meekhof, P. K.Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2658 (1995).
    [7] N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654 (1995).
    [8] Tzu-Ling Chen, Isaac Fan, Hsuan-Chen Chen, Chang-Yi Lin, Shih-En Chen, Jow-Tsong Shy, and Yi-Wei Liu, “Absolute frequency measurement of the 6P1/2→7S1/2 transition in thallium” Phys. Rev. A 86, 052524 – Published 29 November 2012
    [9] Nang-Chian Shie, Chun-Yu Chang, Wen-Feng Hsieh, Yi-Wei Liu, and Jow-Tsong Shy, “Frequency measurement of the 6P3/2->7S1/2 transition of thallium” Phys. Rev. A 88, 062513(2013)
    [10] 楊士模, “鉈原子在6P1/2到7S1/2的光譜量測” 國立清華大學物理系碩士論文, 2004
    [11] T. Andersen and G. Sorensen, “Systematic Study of Atomic Lifetimes in Gallium, Indium, and Thallium Measured by the Beam-Foil Technique” Phys. Rev. A 5, 2447 (1972)
    [12] W.Demtroder, Laser Spectroscopy : Vol.1: Basic Principles, 4th ed. (Springer, 2008)
    [13] Christopher J. Foot, Atomic physics. (Oxford, 2005)
    [14] D J McCarron, S A King and S L Cornish, “Modulation transfer spectroscopy in atomic rubidium” Meas. Sci. Technol. 19 (2008) 105601
    [15] Hansch T W and Couillaud B, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35 441–4 (1980)
    [16] 施能謙, “可調單頻Nd:GdVO4雷射及其光譜應用” 國立交通大學光電工程學系博士班論文, 2014
    [17] 林長義, “利用中空陰極放電管研究鉈原子之光阻抗與飽和吸收光譜” 國立清華大學物理系碩士論文, 2012
    [18] G. Hermann, G. Lasnitschka, and D. Spengler, “Hyperfine structures and level isotope shifts of the n2S1/2 (n=7-12)-and n2D3/2,5/2(n=6-10)-levels of 203,205Tl measured by atomic beam spectroscopy,” Z. Phys. D 28, 127 (1993).
    [19] K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency” Phys. Rev. Lett. 66, 2593 – Published 20 May 1991
    [20] 陳姿伶, “鉈原子中Λ型三能階與光場的交互作用之研究”, 國立清華大學物理系碩士論文, 2008
    [21] NIST Atomic Transition Probability tables.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE