簡易檢索 / 詳目顯示

研究生: 陳錫傑
Shi-Jie Cheng
論文名稱: Precoder Quantization with LU Decomposition for Limited Feedback Channel MIMO Communications
有限回饋通道下的LU分解量化預先編碼器多天線通訊系統
指導教授: 吳仁銘
Jen-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 54
中文關鍵詞: 多天線系統預先編碼器LU分解有限回饋通道
外文關鍵詞: MIMO, Precoder, LU decomposition, Limited Feedback Channel
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多天線系統(MIMO)中,利用空間上多路複用(Multiplexing)之傳送天線波束賦形技術(Beamforming)是一種用來分離不同天線所傳來串流的技術。在有限的回饋頻寬下,天線波束賦形的矩陣必須被量化並回饋到傳送端。一般常見的方法,是利用奇異值分解(SVD)來設計出預先編碼器跟解碼器,然後基於Householder反射處理後,再回饋向量層面經過量化的天線波束賦形矩陣到傳送端。
    在先前的論文中,已有人使用LU分解(LUD)來求得天線波束賦形矩陣。利用L下三角矩陣的特性,使得LU分解可以藉由迭代的方式來產生,因此在實作方面也更容易被實現。但是先前的論文並沒有討論要如何將天線波束賦形矩陣回饋到傳送端。為了可以解決此問題,在這篇論文中,我們將提出一種不同於以往的方法,我們推導出一個可以使L矩陣行的範數(Norm)為1的LU分解。藉此就可以在LU分解後,將向量層面經過量化的天線波束賦形矩陣回饋到傳送端。我們也會證實,在傳送端及接收端天線個數不多於10的情形下,LU分解在計算複雜度上會低於奇異值分解。而且利用LU分解的向量層面量化比起利用奇異值分解的向量層面量化,在回饋效率及編碼本(Codebook)搜尋時間都有較好的效能。最後,藉由模擬的結果,可以顯示出LU分解的系統比起奇異值分解的系統,會有較佳的誤碼率(BER)效能。而在信雜噪比(SINR)方面,使用LU分解之系統也有較佳的表現。


    Spatial multiplexing with transmit beamforming is a technique for multi-input multi-output (MIMO) systems to separate transmit streams that are sent from different antennas. Under the constraint of limited feedback bandwidth, the beamforming matrix must be quantized and then fed back to transmitter. The conventional method utilizes singular value decomposition (SVD) to design the precoder and the decoder, and then feedback the beamforming matrix to transmitter with vector-wise quantization based on Householder reflection. In this thesis, we propose a different approach using LU decomposition (LUD) to obtain the beamforming matrix. We show that LUD has lower computational complexity than SVD, and vector-wise quantization with LUD has better feedback efficiency than that with SVD. Finally the simulation results show LUD system has better bit error rate (BER) performance than SVD system.

    中文目錄 ... I 中文摘要 ... II 致謝 ... III 英文論文本 ... IV Abtract Contents 1 Introduction ... 1 2 MIMO System and Precoder Design Basics ... 3 2.1 MIMO System and Channel Model ... 3 2.1.1 Bene‾ts of MIMO Technology ... 3 2.1.2 MIMO System Model ... 5 2.1.3 MIMO Channel Model ... 6 2.2 Precoder Design Basics ... 6 2.2.1 Benefits of Precoding ... 6 2.2.2 Basic Structure of Transceiver with Precoder Design ... 7 3 System Analysis ... 9 3.1 MIMO Precoder with SVD ... 9 3.1.1 Introduction of SVD Algorithm ... 9 3.1.2 Precoder Design with SVD Algorithm ... 10 3.2 Proposed MIMO Precoder with LU Channel Decomposition ... 11 3.2.1 Introduction of LUD Algorithm ... 11 3.2.2 Precoder Design with LUD algorithm ... 12 3.2.3 Proposed Column-Unitary LUD Algorithm ... 13 3.3 Channel Condition Analysis ... 18 3.4 Computational Complexity of SVD MIMO Precoder ... 23 3.4.1 Adaptive SVD Update Algorithm ... 23 3.4.2 Analysis of Computational Complexity for Adaptive SVD ... 28 3.5 Computational Complexity of LUD MIMO Precoder ... 29 3.6 The Comparison of Computational Complexity ... 34 4 Precoder Quantization for Limited Feedback Channel ... 37 4.1 Quantization of Beamforming Matrix ... 38 4.2 Precoder Quantization of SVD Algorithm ... 39 4.3 Precoder Quantization of Proposed LUD Algorithm ... 43 4.4 Feedback Bandwidth Comparison ... 45 5 Simulation Results ... 46 6 Conclusion ... 52 Bibliography ... 53

    [1] David J. Love, Robert W. Heath, Jr., and Thomas Strohmer. "Grassmannian beamforming for multiple-input multiple-output wireless systems". IEEE Trans. on Information Theory, 49(10), Oct 2003.

    [2] David J. Love, Robert W. Heath, and Jr. "Limited feedback unitray precoding for spatial multiplexing systems". IEEE Trans. on Information Theory, 51(8), Aug
    2005.

    [3] Qinghua Li and Xintian Eddie Lin. "Compact feedback for MIMO-OFDM systems over frequency selective channels". IEEE Trans. on Vehicular Technology Conference, 1:187-191, Jun 2005.

    [4] Qiang Li and Costas N. Georghiades. "Precoder quantization for MIMO-OFDM Systems over frequency selective channels". Mobile and Wireless Communications Summit, 2007.

    [5] Ciou-Ping Wu and Jen-Ming Wu. "Low complexity channel decomposition for spatial multiplexing MIMO communications". IEEE SPAWC, 2008.

    [6] S. J. Leon. "Linear algebra with applications". Sixth Edition, 2002.

    [7] Qinghua Li, Xintian Eddie Lin, Ada Poon, Minnie Ho, Nageen Himayat, and Shilpa Talwar. "Improved feedback for 802.16e MIMO precoding". IEEE 802.16 Broadband Wireless Access Working Group.

    [8] T. J. Willink. "E±cient adaptive SVD algorithm for MIMO applications". IEEE Trans. on Signal Processing, 56(2), Feb 2008.

    [9] G. W. Stewart and J. G. Sun. "Matrix perturbation theory". 1990.

    [10] B. Champagne. "Adaptive eigendecomposition of data covariance matrices based on first-order perturbations". IEEE Trans. on Signal Process, 42(10):2758-2770, Oct 1994.

    [11] B. Champagne. "Plane rotation-based EVD updating schemes for efficient subspace tracking". IEEE Trans. on Signal Process, 46(7):1886-1900, Jul 1998.

    [12] DaeGon Kim and Sanjay V. Rajopadhye. "An improved systolic architecture for LU decomposition". IEEE 17th International Conference on Application-specific Systems, Architectures and Processors, pages 231-238, 2006.

    [13] Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea Goldsmith, Arogyaswami Paulraj, and H. Vincent Poor. "MIMO wireless communications". 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE