簡易檢索 / 詳目顯示

研究生: 李衍毅
Yen-Yi Lee
論文名稱: 最佳二位元前綴碼指數加權平均長度之界限
Bounds on Exponentially Weighted Average Length of Optimal Binary Prefix Codes
指導教授: 鄭傑
Jay Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 22
中文關鍵詞: 訊源編碼前綴碼
外文關鍵詞: Source coding, prefix codes, Campbell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上,我們通常使用訊號源符號機率對其字碼長度之加權平均值來做為衡量對訊號源編碼效率的評估標準,但在某些通訊環境下,此種評估標準無法適當並正確地反應出對訊號源編碼所實際付出的代價。
    有別於傳統上所習慣採用的平均長度,在此篇論文中,我們採用由Campbell 在1965年所提出的指數加權平均長度來衡量編碼之率,其假定對訊號源編碼所付出的代價與字碼長度成一指數關係,並且可將其視為傳統平均長度之推廣。在若干通訊的傳輸環境之下,採用 Campbell 所提出的平均長度來評估編碼之效率較使用傳統的平均長度更為適當,特別是在編碼和解碼所需之成本很高或是過長的字碼會造成儲存元件之暫存區滿溢並導致資料流失。
    在採用 Campbell 所提出的平均長度來做為衡量對訊號源編碼效率之標準的前提下,於本篇論文中,我們推導一些最佳二位元前綴碼(prefix code)之性質,並且在訊號源符號機率分佈之部分資訊已知的情況下-特別是在任意多個訊號源符號之機率、訊號源符號之最大機率或是最小機率已知的情形下,我們分別探討並提供若干最佳二位元前綴碼之 Campbell 平均長度的上界限與下界限。
    本篇論文的主要貢獻在於除了可在實際通訊環境上提供比目前已知結果更精確的效能評估,亦可將其應用於訊息理論中之猜測與賭博問題的研究上。


    In this thesis, we consider the exponentially weighted average codeword length introduced by Campbell as a performance measure for source codes. This criterion assumes that the cost is an exponential function of the codeword length and includes the usual expected codeword
    length criterion as a special case. Such situations could arise when the cost for encoding and decoding is significant, or if the buffer overflow caused by long codewords is a serious issue. Under Campbell's average codeword length criterion, we derive new upper and lower
    bounds on the exponentiated expected length of optimal binary prefix codes when partial information about the source symbol probabilities is available.

    Abstract i Contents ii List of Figures iii 1 Introduction 1 2 New Bounds on Lt(X) When the Probabilities of Any n Source Symbols Are Available 4 2.1 Upper Bounds . . . . . . . . . . . . . . . . . 4 2.2 Lower Bounds . . . . . . . . . . . . . . . . . 9 3 Some Properties of t-Optimal Codes 11 4 New Bounds on Lt(X) When p1 And/Or pN Are Available 16 5 Conclusions 19 Bibliography 20

    [1] C. E. Shannon, A mathematical theory of communication," Bell System Technical Journal, vol. 27, pp. 379-423 (Part I), 623-656 (Part II), July, October 1948.
    [2] A. Renyi, On measures of entropy and information," Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 1960, pp. 547-561.
    [3] L. L. Campbell, A coding theorem and Renyi's entropy," Information and Control, vol. 8, pp. 423-429, August 1965.
    [4] L. L. Campbell, Definition of entropy by means of a coding problem," Zeitschrift fÄur Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 6, pp. 113-118, 1966.
    [5] F. Jelinek, Buffer overflow in variable length coding of fixed rate sources," IEEE Transactions on Information Theory, vol. 14, pp. 490-501, May 1968.
    [6] P. A. Humblet, Generalization of Huffman coding to minimize the probability of buffer overflow," IEEE Transactions on Information Theory, vol. 27, pp. 230-232, March 1981.
    [7] A. C. Blumer and R. J. McEliece, The Renyi redundancy of generalized Huffman codes," IEEE Transactions on Information Theory, vol. 34, pp. 1242-1249, September 1988.
    [8] R. G. Gallager, Variations on a theme by Huffman," IEEE Transactions on Information Theory, vol. 24, pp. 668-674, November 1978.
    [9] O. Johnsen, On the redundancy of binary Huffman codes," IEEE Transactions on Information Theory, vol. 26, pp. 220-222, March 1980.
    [10] R. M. Capocelli, R. Giancarlo, and I. J. Taneja, Bounds on the redundancy of Huffman codes," IEEE Transactions on Information Theory, vol. 32, pp. 854-857, November 1986.
    [11] B. L. Montgomery and J. Abrahams, On the redundancy of optimal binary prefix condition codes for finite and infinite sources," IEEE Transactions on Information Theory, vol. 33, pp. 156-160, January 1987.
    [12] B. L. Montgomery and B. V. K. V. Kumar, On the average codeword lenth of optimal binary codes for extended sources," IEEE Transactions on Information Theory, vol. 33,
    pp. 293-296, March 1987.
    [13] J. Golic and M. M. Obradovic, A lower bound on the redundancy of D-ary Huffman codes," IEEE Transactions on Information Theory, vol. 33, pp. 910-911, November 1987.
    [14] J. Golic and M. M. Obradovic, Correction to A lower bound on the redundancy of D-ary Huffman codes"," IEEE Transactions on Information Theory, vol. 36, p. 443, March 1990.
    [15] R. M. Capocelli and A. De Santis, Tight upper bounds on the redundancy of Huffman codes," IEEE Transactions on Information Theory, vol. 35, pp. 1084-1091, September 1989.
    [16] R. M. Capocelli and A. De Santis, A note on D-ary Huffman codes," IEEE Transactions on Information Theory, vol. 37, pp. 174-179, January 1991.
    [17] R. M. Capocelli and A. De Santis, New bounds on the redundancy of Huffman codes,"
    IEEE Transactions on Information Theory, vol. 37, pp. 1095-1104, July 1991.
    [18] R. W. Yeung, Local redundancy and progressive bounds on the redundancy of a Huffman code," IEEE Transactions on Information Theory, vol. 37, pp. 687-691, May 1991.
    [19] D. Manstetten, Tight bounds on the redundancy of Huffman codes," IEEE Transactions on Information Theory, vol. 38, pp. 144-151, January 1992.
    [20] R. De Prisco and A. De Santis, On the redundancy achieved by Huffman codes," Informatics and Computer Science, vol. 88, pp. 131-148, 1996.
    [21] R. De Prisco and A. De Santis, On lower bounds for the redundancy of optimal codes," Designs, Codes and Cryptography, vol. 15, pp. 29-45, 1998.
    [22] C. Ye and R. W. Yeung, A simple upper bound on the redundancy of Huffman codes," IEEE Transactions on Information Theory, vol. 48, pp. 2132{2138, July 2002.
    [23] D. A. Huffman, A method for the construction of minimum redundancy codes," Proceeding IRE, vol. 40, pp. 1098-1101, September 1952.
    [24] T. M. Cover and J. A. Thomas, Elements of Information Theory, New York, NY: John Wiley & Sons, 1991.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE