簡易檢索 / 詳目顯示

研究生: 劉怡彣
Yi-Wen Liu
論文名稱: 改善奈米二氧化鈦在水相中的分散性
Improvement of the dispersions of nanosized titanium dioxide in aqueous solution
指導教授: 吳劍侯
Chien-Hou Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 64
中文關鍵詞: 二氧化鈦超親水性分散
外文關鍵詞: Titanium dioxide, Super hydrophilicity, Dispersion
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討不同分散方法(包括超音波震盪法及紫外光照促進分散)對於奈米二氧化鈦懸浮液分散性質之影響。實驗中利用動態光散射儀(DLS)量測粒徑與界面電位變化及紫外光可見光光譜儀測定懸浮液吸光值變化,以進一步討論二氧化鈦在懸浮液中之分散性及安定性。探討實驗變數包括:二氧化鈦種類、光照時間、光照方式、超音波震盪時間、貯存時間等。比較未光照處理及光照處理分析結果,紫外光照能促進二氧化鈦懸浮液的分散性及安定性;結果顯示紫外光照能提升膠體的界面電位,促使懸浮液粒徑維持在200 nm以下,而且其UV-Vis吸光值也隨光照時間增加,此外,經紫外光照之樣品放置約一個月仍有不錯的懸浮性。在特性量測上,以BET、TPR、IR、XPS等儀器之分析結果與文獻對照,可知紫外光照後二氧化鈦使面OH官能基數量增加,使二氧化鈦與水溶液的濕潤性增加,促進二氧化鈦在懸浮液中的分散性及安定性。


    Understanding the colloidal properties of nanometer-sized particles is essential to successful processing of manufactured nanophase materials. The small length scale at which particles interact presents new and unique challenges. Dispersion and stability can be difficult goals at the nanoscale. Nanoparticles always tend to agglomerate, decreasing the surface-to-volume ratio and, as a result, the free energy of the system. The force that drives the agglomeration process is the van der Waals attraction. The forces that may prevent the agglomeration and increase colloidal stability are the electrostatic and steric repulsions between the surfaces. Suspensions with strong repulsive forces between particles are generally well dispersed and stable.
    A variety of techniques have been employed to increase the stability of dispersions. Simple mechanical stirring is used to break up soft agglomeration. Sonication can be used as a temporary measure to break up agglomerates, especially if they are large and the particles are weakly bonded. In a simple liquid environment, interparticle forces can be adjusted or tailored by using a suitable dispersion media, adjusting solution pH and ionic concentration, or by using surfactants or polymers that adsorb on particle surfaces. These different approaches to dispersion stabilizations can work quite well in many circumstances; however, their use is often limited.
    We focused on studies of the colloidal behaviors of titanium dioxide (TiO2) nanoparticles in aqueous systems, which were analyzed by dynamic light scattering (DLS) and UV- vis spectrometry. In this study, types of titanium dioxide and effects of ultra-sonication, irradiation time, and storage time were investigated systematically. It was found that ultrasonication can help to break up agglomeration. Also, upon pretreatment of UV irradiation, the dispersion and stability of TiO2 nanoparticles in deioned water was greatly enhance by increasing the zeta potential. Furthermore, the titanium dioxide were characterized by Brunauer-Emmett-Teller (BET), X-Ray Powder Diffractometer(XRPD), temperature programmed reduction (TPR), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). It was found that after UV irradiation, the amount of hydroxyl group increased, which induced hydrophilicity and improved the dispersion and stability of titanium dioxide.

    中文摘要…………………………………………………………...........…………...I 英文摘要……………………………………………………………………...………II 致謝……………………………………………………………………...…………IV 目錄………………………………………………………………………...…………V 表目錄……………………………………………………………………..……........IX 圖目錄…………………………………………………………………………...........X 第一章 前言………………………..…………………………………………..……1 1.1 簡介………………………………………………………………….………1 1.2 研究目的……………………………………………………………..……1 第二章 文獻回顧……………………………………………………………………2 2.1 半導體光觸媒…………………………………………………………….…2 2.2 二氧化鈦……………………………………………………………………2 2.2.1 二氧化鈦的結構…………………………………………………..…3 2.2.2 光催化之原理………………………………………………………4 2.2.3 超親水性之機制……………………………………………………6 2.3 分散機制………………………………………………………….....…..…8 2.4 分散方法………………………………………………………...…..……..9 2.4.1 物理分散法…………………………………………………......……9 2.4.2 化學分散法…………………………………………………..……10 第三章 實驗方法……………………………………………………………..……13 3.1 實驗材料與儀器……………………………………………….…………13 3.1.1 實驗材料………………………………………………..…………13 3.1.2 分析儀器……………………………………………………………14 3.2 實驗流程與內容…………………………………………………….……14 3.3 實驗與分析方法…………………………………………………….……15 3.3.1 攪拌對分散的影響………………………………………..………15 3.3.2 超音波震盪對分散的影響…………………………………………15 3.3.3 pH對分散系統的影響………………………..……………………16 3.3.4 離心對分散的影響…………………………………………………16 3.3.5 紫外光照對分散的影響……………………………………………16 3.3.6 貯存期………………………………………………..……………17 3.3.7 色氨酸吸附實驗……………………………………..……………17 3.4 特性分析原理與方法……………………………………….……………18 3.4.1 雷射光散射儀 (DLS)……………………………….……………18 3.4.2 比表面積測定儀 (BET)………………………………….………20 3.4.3 X光粉末繞射儀 (XPRD)…………………………………………21 3.4.4 電子能譜儀 (XPS)…………………….…………………………21 3.4.5程溫規劃還原系統 (TPR)………………….………………………22 第四章 結果與討論……………………………......………………………………23 4.1 二氧化鈦本質之分析…………………….………………………………23 4.2 參數探討………………………………………….………………………24 4.2.1 攪拌的影響………………………………..……………………..…24 4.2.2 超音波震盪的影響……………………………..…………………25 4.2.3 pH對分散系統的影響………………………..……………………27 4.2.4 離心對分散系統的影響……………………………………………27 4.3 紫外光照對分散系統之影響………………………………...……….…..29 4.3.1 二氧化鈦粉末光照………………..……………….…………….…29 4.3.2 其他二氧化鈦粉末光照對分散系統之影響………….…...………35 4.3.3 二氧化鈦懸浮液光照…………………………….....…..….………39 4.3.4 二氧化鈦以粉末及懸浮液光照之比較………………………..…41 4.4 二氧化鈦粉末在紫外光照前後之特性變化…………...…………………43 4.5.1 紅外線光譜 (FT-IR)………………...…...…...……………………43 4.5.2 電子能譜儀 (XPS) ……….……………...….……………………44 4.5.3 比表面積 (BET)……..……….………..…………...……….....…46 4.5.4 程溫還原 (H2-TPR)..…..…….………………...….…………...…48 4.4.5 螢光試劑吸附效應….……………….……...….…………………50 第五章 結論與建議.……………..…………….………………………………55 5.1 結論...……………………..…………….…………………………………55 5.2 建議...………………………..………….…………………………………56 參考文獻...………………..……………….……………………………………57

    Balfour, J. G., Fine particle titanium dioxide—Its properties and uses. Surface Coatings International 1992, 2, 1-23.
    Banash, M. A.; Croll, S. G., A Quantitative study of polymeric dispersant adsorption onto oxide-coated titania pigments. Progress in Organic Coatings 1999, 35, 37-44.
    Bhatkhande, D.; Pangarkar, V.; Beenackers, A., Photocatalytic degradation for environmental applications-a review. Journal of Chemical Technology and Biotechnology 2001, 77, 102-116.
    Chary, K. V.; Bhaskar, T.; Seela, K. K.; Lakshmi, K. S.; Reddy, K. R., Characterization and reactivity of molybdenum oxide catalysts supported on anatase and rutile polymorphs of titania. Applied Catalysis A: General 2001, 208, 291-305.
    Cullity, B. D.; Stock, S. R., Elements of X-Ray Diffraction. 3rd ed.; 2001.
    Daneshvar, N.; Salari, D.; Khataee, A. R., Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology A: Chemistry 2004, 162, 317-322.
    Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E.; Dimonie, L.; El-Aasser, M. S., XPS and FTIR Surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 2001, 17, 2664-2669.
    Fujishima, A.; Hashimoto, K.; Watanabe, T., TiO2 photocatalysis fundamentals and applications. 1st ed.; BKC Inc.: 1999.
    Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
    Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2000, 1, 1-21.
    Gajovic, A.; Stubicar, M.; Ivanda, M.; Furic, K., Raman spectroscopy of ballmilled TiO2. Journal of Molecular Structure 2001, 563, 315-320.
    Gao, Y. F.; Masuda, Y.; Koumoto, K., Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution. Langmuir 2004, 20, 3188-3194.
    Gregg, S. J.; Sing, K. S. W., Adsorption Surface Area and Porosity. Academic Press: London, 1982.
    Heijman, S. G. J.; Stein, H. N., Electrostatic and steric stabilization of TiO2 dispersions. Langmuir 1995, 11, 422-427.
    Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W., Environmental applications of semiconductor photocatalysis. Chemical Reviews 1995, 95, 69-96.
    Jongsomjit, B.; Wongsalee, T.; Praserthdam, P., Study of cobalt dispersion on titania consisting various rutile: anatase ratios. Materials Chemistry and Physics 2005, 92, 572-577.
    Kang, M.; Lee, M., Synthesis and characterization of Al-, Bi-, and Fe-incorporated mesoporous titanosilicate (MPTS) materials and their hydrophilic properties. Applied Catalysis A: General 2005, 284, 215-222.
    Kim, Y. J.; Chai, S. Y.; Lee, W. I., Control of TiO2 structures from robust hollow microspheres to highly dispersible nanoparticles in a tetrabutylammonium hydroxide solution. Langmuir 2007, 23, 9567-9571.
    Konstantinou, I. K.; Albanis, T. A., TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review. Applied Catalysis B: Environmental 2004, 49, 1-14.
    Kosmulski, M., The significance of the difference in the point of zero charge between rutile and anatase. Advances in Colloid and Interface Science 2002, 99, 255-264.
    Kosmulski, M.; Gustafsson, J.; Rosenholm, J. B., Correlation between the zeta potential and rheological properties of anatase dispersions. Journal of Colloid and Interface Science 1999, 209, 200-206.
    Lebrette, S.; Pagnoux, C.; Abélard, P., Stability of aqueous TiO2 suspensions: influence of ethanol. Journal of Colloid and Interface Science 2004, 280, 400-408.
    Linsebigler, A.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews 1995, 95, 735-758.
    Lowell, S.; Shields, J. E., Powder surface area and porosity. New York: Chapman & Hall: 1991.
    Mahmoodi, N. M.; Arami, M., Bulk phase degradation of Acid Red 14 by nanophotocatalysis using immobilized titanium(IV) oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry 2006, 182, 60–66.
    Mahmoodi, N. M.; Arami, M.; Yousefi, L. N.; Salman, T. N., Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chemical Engineering Journal 2005, 112, 191-196.
    Mandzy, N.; Grulke, E.; Druffel, T., Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technology 2005, 160, 121–126.
    Martyanov, I. N.; Savinov, E. N.; Klabunde, K. J., Influence of solution composition and ultrasonic treatment on optical spectra of TiO2 aqueous suspensions. Journal of Colloid and Interface Science 2003, 267, 111–116.
    Mezhenny, S.; Maksymovych, P.; Thompson, T. L.; Diwald, O.; Stahl, D.; Walck, S. D.; Yates, J. T., STM studies of defect production on the TiO2 (110)-(1x1)and TiO2 (110)-(1x2) surfaces induced by UV irradiation. Chemical Physics Letters 2003, 369, 152–158.
    Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K., Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chemistry of Materials 2002, 14, 2812-2816.
    Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D., Handbook of X-ray photoelectron spectroscopy. Physical Electronics. Inc.: 1995.
    Nakajima, A.; Koizumi, S.; Watanabe, T.; Hashimoto, K., Effect of repeated photo-illumination on the wettability conversion of titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry 2001, 146, 129–132.
    Nosaka, A. Y.; Nishino, J.; Fujiwara, T.; Ikegami, T.; Yagi, H.; Akutsu, H.; Nosaka, Y., Effects of thermal treatments on the recovery of adsorbed water and photocatalytic activities of TiO2 photocatalytic systems. The Journal of Physical Chemistry B 2006, 110, 8380-8385.
    Paola, A. D.; García-López, E.; Ikeda, S.; Marcì, G.; Ohtani, B.; Palmisano, L., Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today 2002, 75, 87-93.
    Pohl, M.; Schubert, H., Dispersion and de-agglomeration of nanoparticles in aqueous solutions. International Congress for Particle Technology Partec 2004, Nuremberg, Germany, 16-18.
    Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. The Journal of Physical Chemistry B 2003, 107, 1028-1035.
    Saltiel, C.; Chen, Q.; Manickavasagam, S.; Schadler, L. S.; Siegel, R. W.; Menguc, M. P., Identification of the dispersion behavior of surface treated nanoscale powders. Journal of Nanoparticle Research 2004, 6, 35-46.
    Sanjinés, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; Lévy, F., Electronic structure of anatase TiO2 oxide. Journal of Applied Physics 1994, 75, 2945.
    Sen, S.; Ram, M. L.; Roy, S.; Sarkar, B. K., The structural transformation of anatase TiO2 by high-energy vibrational ball milling. Journal of Materials Research 1999, 14, 841-848.
    Simakov, S. A.; Tsur, Y., Surface stabilization of nano-sized titanium dioxide: improving the colloidalstability and the sintering morphology. Journal of Nanoparticle Research 2007, 9, 403–417.
    Song, K. Y.; Park, M. K.; Kwon, Y. T.; Lee, H. W.; Chung, W. J.; Lee, W. I., Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties. Chemistry of Materials 2001, 13, 2349-2355.
    Sun, R. D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Photoinduced surface wettability conversion of ZnO and TiO2 thin films. The Journal of Physical Chemistry B 2001, 105, 1984-1990.
    Thompson, T. L.; Yates, J. T., Surface science studies of the photoactivation of TiO2 new photochemical processes. Chemical Reviews 2006, 106, 4428-4453.
    Tkachenko, N. H.; Yaremko, Z. M.; Bellmann, C.; Soltys, M. M., The influence of ionic and nonionic surfactants on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide. Journal of Colloid and Interface Science 2006, 299, 686-695.
    Tran, T. H.; Nosaka, A. Y.; Nosaka, Y., Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. The Journal of Physical Chemistry B 2006, 110, 25525-25531.
    Vasylkiv, O.; Sakka, Y., Synthesis and colloidal processing of zirconia nanopowder. Journal of the American Ceramic Society 2001, 84, 2489-2494.
    Vickerman, J. C., Surface Analysis - The Principle Techniques. 1st ed.; John Wiley & Sons: New York, 1997.
    Wang, C. Y.; Groenzin, H.; Shultz, M. J., Molecular species on nanoparticulate anatase TiO2 film detected by sum frequency generation: trace hydrocarbons and hydroxyl groups. Langmuir 2003, 19, 7330-7334.
    Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Light-induced amphiphilic surfaces. Nature 1997, 388, 431-432.
    Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Photogeneration of highly amphiphilic TiO2 surfaces. Advanced Materials 1998, 10, 135-138.
    Wang, R.; Hashimoto, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Studies of surface wettability conversion on TiO2 single-crystal surfaces. The Journal of Physical Chemistry B 1999, 103, 2188-2194.
    Widegren, J., Electrostatic stabilization of ultrafine titania in ethanol. Journal of the American Ceramic Society 2002, 85, 523-528.
    Xu, G.; Zhang, J.; Li, G.; Song, G., Effect of complexation on the zeta potential of titanium dioxide dispersions. Journal of Dispersion Science and Technology 2003, 24, 527-535.
    Yu, J.; Grossiord, N.; Koning, C. E.; Loos, J., Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 2007, 45, 618-623.
    Yu, J. C.; Yu, J.; Hoa, W.; Zhaoc, J., Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry 2002, 148, 331-339.
    Zhang, Z.; Wang, C. C.; Zakaria, R.; Ying, J. Y., Role of particle size in nanocrystalline TiO2-based photocatalysts. The Journal of Physical Chemistry B 1998, 102, 10871-10878.
    Zhu, H.; Qin, Z.; Shan, W.; Shen, W.; J., W., Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents. . Journal of Catalysis 2004, 225, 267–277.
    Zubkov, T.; Stahl, D.; Thompson, T. L.; Panayotov, D.; Diwald, O.; Yates, J. T., Ultraviolet Light-Induced Hydrophilicity Effect on TiO2(110)(1x1). Dominant Role of the Photooxidation of Adsorbed Hydrocarbons Causing Wetting by Water Droplets. The Journal of Physical Chemistry B 2005, 109, 15454-15462.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE