簡易檢索 / 詳目顯示

研究生: 羅威揚
Wei-Yang, Lo
論文名稱: 利用緊束法計算奈米碳管的能帶結構
Calculation of band structures of carbon nanotubes with tight-binding method
指導教授: 吳玉書
Yu-Shu, Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 25
中文關鍵詞: 奈米碳管能帶結構緊束法第三鄰近原子
外文關鍵詞: carbon nanotube, band structure, tight-binding method, third-nearest neighbor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們再次使用緊束法(tight-binding method)來研究單壁奈米碳管的能帶結構。藉由推廣至第三鄰近原子的Slater-Koster參數表示法,我們考慮了管壁的曲率效應。對於某些小半徑的(n,0)奈米碳管,例如(6,0),其電子能隙在本計算中大幅地減小。此一符合其他的第一原理(first-principle)計算的結果並不能僅藉由第二鄰近的參數來求得。另外,對於(n,n)奈米碳管,曲率效應並不會改變其金屬特性。因此,第三鄰近原子在奈米碳管的能帶計算中不可忽略,特別是對於小半徑、小角度(chiral angle)的奈米碳管。藉由使用適當的S-K參數,緊束法可以很有效率地產生與第一原理結果相當的能帶結構。


    The electronic band structures of single-walled carbon nanotubes (SWCNTs) are investigated again within the tight-binding scheme. The curvature effects are considered with the Slater-Koster parameters extended to the 3rd nearest neighbors. For small-diameter zigzag SWCNTs such as the (6,0) case, the energy band gap is significantly reduced. This result which is confirmed with the first-principle studies can not be reproduced when the parameters are only extended to the 2nd nearest neighbors. For armchair SWCNTs, curvature effects do not alter the metallic property because of symmetry. It is concluded that the 3rd nearest neighbors can not be neglected for the band structures of small-diameter and small-chiral-angle SWCNTs. By using appropriate Slater-Koster parameters, the tight-binding method can be efficient to generate the band structures comparable with the first-principle results.

    Abstract List of Figures 1. INTRODUCTION...1 2. CALCULATION...3 2.1 Tight-binding Method 2.2 Geometric Structures 2.3 Curvature Effects 2.4 Electronic Structures 3. RESULTS AND DISCUSSION...14 4. CONCLUSION...21 APPENDIX...22 A. Electronic States in a N-atoms Ring B. Useful parameters for SWCNTs REFERENCE...25

    [01] Phaedon Avouris, Joerg Appenzeller, Richard Martel, and Shalom J. Wind, “Carbon Nanotube Electronics” Proceedings of the IEEE, Vol. 91, No. 11, pp. 1772-1784 (2003)
    [02] Paul L. McEuen, Michael S. Fuhrer, and Hongkun Park, “Single-walled Carbon Nanotube Electronics” IEEE Transactions on Nanotechnology, Vol. 1, No. 1, pp.78-85 (2002)
    [03] Peter Y. Yu and Manuel Cardona, “Fundamentals of Semiconductors: Physics and Materials Properties” 3rd Springer, (2004)
    [04] J. W. Mintmire, B. I. Dunlap, and C. T. White, “Are Fullerene Tubules Metallic?” Physical Review Letters, Vol. 68, No. 5, pp. 631-634 (1992)
    [05] Noriaki Hamada, Shin-ichi Sawada, and Atsushi Oshiyama, “New One-dimensional Conductors: Graphitic Microtubules” Physical Review Letters, Vol. 68, No. 10, pp. 1579-1581 (1992)
    [06] Riichiro Saito, Mitsutaka Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of graphene tubules based on C60” Physical Review B, Vol. 46, No. 3 (1992)
    [07] S. Iijima, Nature (London) 354, 56 (1991)
    [08] V. Zólyomi and J. Kürti, “First-principles calculations for the electronic band structures of small diameter single-wall carbon nanotubes” Physical Review B, Vol. 70, 085403 (2004)
    [09] O. Gülseren, T. Yildirim, and S. Ciraci, “Systematic ab initio study of curvature effects in carbon nanotubes” Physical Review B, Vol. 65, 153405 (2002)
    [10] X. Blase, Lorin X. Benedict, Eric L. Shirley, and Steven G. Louie “Hybridization effects and metallicity in small radius carbon nanotubes” Physical Review Letters, Vol. 72, No. 12, pp. 1878-1881 (1994)
    [11] Jiangwei Chen, Zhenghui Yang, and Jun Gu “Energy gap of the metallic single-walled carbon nanotubes” Modern Physics Letters B, Vol. 18, No. 15, pp. 769-774 (2004)
    [12] Valentin N. Popov, “Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model” New Journal of Physics, Vol. 6, No. 17, (2004)
    [13] H. Yorikawa and S. Muramatsu “Energy gaps of semiconducting nanotubules” Physical Review B, Vol. 52, No. 4, pp. 2723-2727 (1995)
    [14] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Physical Properties of Carbon Nanotubes” Imperial College Press, (1998)
    [15] S. Reich, C. Thomsen, and J. Maultzsch, “Carbon Nanotubes: Basic Concepts and Physical Properties” WILEY-VCH, (2004)
    [16] Alex Kleiner and Sebastian Eggert, “Band gaps of primary metallic carbon nanotubes” Physical Review B, Vol. 63, 073408 (2001)
    [17] David Tománek and Steven G. Louie “First-principles calculation of highly asymmetric structure in scanning-tunneling-microscopy images of graphite” Physical Review B, Vol. 37, p. 8327 (1988)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE