簡易檢索 / 詳目顯示

研究生: 郭政肇
Zheng-Zhao Guo
論文名稱: 小型質子交換膜燃料電池設計與性能研究
Design and Evaluation of Portable Proton Exchange Membrane Fuel Cells
指導教授: 彭宗平教授
Prof. Tsong-Pyng Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 92
中文關鍵詞: 質子交換膜燃料電池儲氫材料
外文關鍵詞: PEMFC, Hydrogen storage materials
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 純氫氣配合低溫型質子交換膜燃料電池使用,有較佳使用效率和便利性,且降低白金觸媒被毒化的機率。本研究之目的在於利用低壓型之儲氫材料配合商用白金碳布電極組裝的燃料電池,量測氫氣的轉換效率。此外,本實驗另一個重點為利用高孔性的海綿鎳取代傳統石墨導流槽組裝小型單電池,藉此了解氫氣流道對燃料電池放電特性之影響,並進一步探討電極面積和氫氣轉換效率之間的關係。
    本實驗首先對低壓型儲氫材料的特性進行瞭解,並自製小型儲氫管作為燃料電池的氫氣供應源﹔同時,藉由自組放電裝置測量燃料電池最佳之放電條件,並用循環伏安法和交流阻抗驗證之。之後使用儲氫管中之氫氣在不同流量下測量燃料電池氫氣轉換效率。

    實驗結果發現,E-TEK商用電極 (觸媒含量0.4 g Pt/cm2)在電池溫度為800C有最佳的放電曲線﹔雖然氫氣轉換效率在氫流量化學計量比為1時轉換效率高但電流卻不穩定。電池溫度為600C時,氫流量化學計量比為1.5時有較穩定的電流,但氫氣轉化效率較前者為低。另外,由高孔性海綿鎳組成的電池組,其放電效率低於傳統的電池組,可能是氣體導流槽未能將氣體均勻分布於反應位置,或是海綿鎳未經疏水處理。此外,測試不同電極面積組成的電池組,發現控制陰極面積可以得到較佳的放電性能。


    Hydrogen gas is considered as a good candidate fuel for the proton exchange membrane fuel cell (PEMFC) due to its convenience in the system design and its high efficiency of energy transfer. Besides, pure hydrogen can prevent the platinum catalyst from poisoning by carbon monoxide below 1000C. In this study, a homemade copper hydrogen storage tube using a commercial metal hydride Hsu-Yang T1 was used as the fuel to study the hydrogen transfer efficiency in the PEMFC. A new cell setup using Ni foam as the gas flow channel was also designed to study the cell performance.
    The P-C-T curves were established and were used to provide basic properties of the metal hydrides. Meanwhile, a fuel cell test station and several single cell setups were fabricated to study the optimum operation condition of the fuel cells. The characteristics of the fuel cell were correlated with the results of AC impedance and cyclic voltammetry. Hydrogen storage tube was installed to the fuel cell test system to study the hydrogen transfer efficiency at different hydrogen flow rates.

    It was found that the E-TEK electrode had higher cell performance than the Toray electrode, and the E-TEK electrode had better discharge performance at 800C than other lower temperatures. A high hydrogen transfer efficiency but unstable currents were obtained. Stable currents but lower hydrogen transfer efficiency could be observed at 600C. With Ni foam replacing for the graphite gas flow channel, the discharge performance was slightly inferior to that of the traditional design. The cell performance was enhanced when the cathode areas were increased presumably due to the increased reaction cross-section of oxygen and the protons.

    Table of Contents 摘要 Abstract 誌謝 Chapter I. Introduction 1 1. Background of the Study 1 2. Classification of Fuel Cells 3 II. Fundamentals of PEMFC 6 1. Principle of PEMFC 6 2. Principle of the Discharge Curve 14 3. Application of PEMFC to the Portable Power Supply 17 4. Principle of Hydrogen Storage Materials 18 III. Experimental 23 1. Characterization of the Hydrogen Storage Materials and the Tube Design 23 2. Design of a PEMFC Test Station 28 3. Preparation of MEA and Substrates 30 4. Design and Assembly of the Single Cell Setup 32 5. Evaluation of Fuel Cell Performance 37 6. Analysis of Catalyst 41 IV. Results and Discussion 42 1. Hydrogenation Characteristics of Metal Hydrides 42 2. Performance of the Hydrogen Storage Tube 48 3. Characterization of the Catalyst 57 4. Performance of the MEA 62 5. Hydrogen Transfer Efficiency 74 6. Performance of the New Cell 79 V. Conclusions 88 VI. Suggested Future Work 89 References 90

    References
    1. J. J. Summer, S. E. Creager, J. J. Ma, and D. D. DesMarteau, J.
    Electrochem. Soc., 145, 107 (1998).
    2. J. Kiman, News week 54B, October 23 (2000).
    3. K. Kordesch and G. Simader, "Fuel cells and their applications,"
    Weinheim, New York :VCH, (1996).
    4. H. Voss and J. Huff, J. Power Sources, 65, 155 (1997).
    5. Bolmen, J. M. J. Leo, and M. N. Megerwa, "Fuel cell systems,"
    Plenum Press, New York and London, (1993).
    6. M. Wakizoe, O. A. Velev, and S. Srinivasan, Electrochimica Acta, 40, 335 (1995).
    7. J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. Klett, "Fuel Cell Handbook," U.S. Department of Energy, Federal Energy Technology Center, (2000).
    8. R. E. Billings and M. Sanchez, Int. J. Hydrogen Energy, 20, 521
    (1995).
    9. K. Broka, P. Ekdunge, J. Appl. Electrochem., 27, 117 (1997).
    10. V. A. Paganin, T. J. Freire, E. A. Ticianelli, and E. R. Gonzalez, Rev. Sci. Instrum., 68, 3540 (1997).
    11. J. S. C. Jang and C. C. Koth, J. Mater. Res., 5, 498 (1990).
    12. M. Pien, D. L. Ho, L. Blair, J. Miller, and W. Massachusetts, FY 2000 Progress Report, U.S. Department of Energy, 2000.
    13. E. Hellstern and L. Schultz, Appl. Phys. Lett., 49, 1163 (1986).
    14. J. H. Lee, T.R. Lalk, and A.J. Appleby, J. Power Sources, 70, 258 (1998).
    15. D. Linden, Handbook of batteries and fuel cells, New York,
    McGraw-Hill, 1984.
    16. E. A. Ticianelli, C.R. Derouin, A. Redondo, and S. Srinivasan, J.
    Electrochem. Soc., 135, 2209 (1988).
    17. R. Rho, O. A. Velev, and, S. Srinivasan, J. Electrochem. Soc., 141, 2084 (1994).
    18. J. Kim, S. -M. Lee, and S. Srinivasan, J. Electrochem. Soc., 142, 2670 (1995).
    19. S. Mukerjee, S. Srinivasan, and A. John Appleby, Electrochimica Acta, 38, 1661 (1993).
    20. W. E. Wallace, R. F. Karllcek, and H. Imamura, J. Phys. Chem., 83,
    1709 (1979).
    21. A. L. Shiov, W. E. Kost, and N. T. Kuznetsov, J. Less-Common Met.,
    144, 23 (1988).
    22. T. Sakai, K. Oguro, H. M. N. Kuriyama, A. Kato, and H. Ishikawa, J.
    Less-Common Met., 161, 193 (1990).
    23. E. A. Ticianelli, J. G. Beery, and S. Srinivasan, J. Appl. Electrochem., 21, 597 (1992).
    24. P. Staiti, Z. Poltarewski, V. Alderucci, G. Maggio, N. Giordano, and A. Fasulo, J. Appl. Electrochem., 22, 663 (1992).
    25. L. R. Jordan, A. K Shukla, T. Benrsing, N. R. Avery, B. C. Muddle, and M. Forsyth, J. Power Sources, 86, 250 (2000).
    26. S. J. Lee, S. Mukerjee, J. Mcbreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, Electrochimica Acta, 43, 3693 (1998).
    27. S. Y. Cha and W. M. Lee, J. Electrochem. Soc., 146, 4055 (1999).
    28. S. Malhotra and R. Datta, J. Electrochem. Soc., 144, L23 (1997).
    29. Y. S. Hsu, C. S. Hsu and Y. C. Chen, Proc. 3rd Inter. Fuel Cell Conference, 503 (1999).
    30. K. J. Gross, G. J. Thomas, and G. Sandrock, Proc. 2000 hydrogen program review.
    31. M. Nagel, Y. Komazaki, M. Uchida, and S. Suda, J. Less-Common Met., 104, 307 (1984).
    32. C. J. M. Northrup, Jr. and A. A. Heckes, J. Less-Common Mer., 74, 419 (1980).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE