研究生: |
林文祥 Wen-Shyang Lin |
---|---|
論文名稱: |
分子束磊晶低溫成長砷化鎵之光偵測器研究 The Study on LT-GaAs Photodetector Grown by Molecular-Beam Epitaxy |
指導教授: |
黃金花
Jin-Hua Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
中文關鍵詞: | 分子束磊晶 、低溫成長砷化鎵 、光偵測器 |
外文關鍵詞: | MBE, LT-GaAs, Photodetector, overhang |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究過程中,我們利用分子束磊晶在低溫成長(230℃及350℃)摻雜矽的砷化鎵做為調變型光偵測器的通道區。並利用黃光微影製程:曝光、顯影、蝕刻等技術得到所要的指狀電極圖樣;並利用浸泡氯苯等方法來使光阻形成突出結構,以利於後續金屬掀除動作。蒸鍍金-鍺-鎳合金當作電極,在360℃退火30秒後形成歐姆接觸。
比較二種不同磊晶結構的調變型光偵測器,結構A具有較大光電流及較小的暗電流。結構B由於成長溫度較高,因此矽的摻雜效率較高,造成AlGaAs層並未完全空乏,形成並聯導通,因此暗電流非常高。在蝕刻掉部分AlGaAs層後已大量降低暗電流,但光電流相對比結構A元件小。
在元件電極圖形方面,具有愈小電極寬度及間距、愈多電極數量及愈大的電極長度相對具有較高的光電流,未來在製程許可下,應可盡量縮小電極尺寸及間距以獲得較高光電流。
1. Yi Chen, Steven Williamson, Tim Brock, F. W. Smith, and A. R. Calawa, “375-GHz-bandwidth photoconductive detector”, Applied Physics Letters, p1984, 1991
2. Subramanian, S.; Schulte, D.; Ungier, L.; Zhao, P.; Plant, T.K.; Arthur, J.R., “High-gain, modulation-doped photodetector using low-temperature MBE- grown GaAs”, IEEE Electron Device Letters, p20, 1995.
3. Gerald L. Witt, Robert Calawa, Umesh Mishra, Eicke Weber, “Low Temperature (LT) GaAs and Related Materials”, 1991.
4. Smith, F.W.; Chen, C.L.; Turner, G.W.; Finn, M.C.; Mahoney, L.J.; Manfra, M.J.; Calawa, A.R., “Sidegating reduction for GaAs integrated circuits by using a new buffer layer”, IEEE, Electron Devices Soc, p838, 1988.
5. Smith, F. W.; Calawa, A. R.; Chen, Chang-Lee; Manfra, M. J.; Mahoney, L. J., “New MBE buffer used to eliminate backgating in GaAs MESFET's”, IEEE Electron Device Letters, p77, 1988.
6. A. C. Warren, J. M. Woodall, J. L. Freeouf, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown”, Applied Physics Letters , p1331, 1990.
7. D. C. Look and D. C. Walters, O. Manasreh, J. R. Sizelove, and C. E. Stutz , “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL2-like band”, Physics Review, p3578, 1990.
8. Mirin, Richard P.; Ibbetson, James P.; Mishra, Umesh K.; Gossard, Arthur C., “Low temperature limits to molecular beam epitaxy of GaAs”, Applied Physics Letters, p2335, 1994.
9. Bert, N.A.; Chaldyshev, V.V.; Kunitsyn, A.E.; Musikhin, Yu. G.; Faleev, N.N.; Tretyakov, V.V.; Preobrazhenskii, V.V.; Putyato, M.A.; Semyagin, B.R., “Enhanced arsenic excess in low-temperature grown GaAs due to indium doping”, Applied Physics Letters, p3146, 1997.
10. David C. Look, “Electrical Characterization of GaAs Materials and Devices”, 1989.
11. Dieter K. Schroder, Semiconductor material and device characterization 2nd Ed., Wiley-Interscience, 1998.
12. M. A. Herman, H. Sitter, “Molecular Beam Epitaxy”, 1996.
13. Murray Hill, “Molecular Beam Epitaxy”, 1994.
14. Robin F. C. Farrow, “Molecular Beam Epitaxy applications to Key materials”, 1995.
15. Wolfgang Braun, “Applied RHEED”, 1999.
16. Ralph E. Williams, “Gallium Arsenide Processing Techniques”, 1984.
17. Mimura, Yoshiaki, “The mechanism of overhang formation in diazide/novolak photoresist film by chlorobenzene soak process”, Journal of Vacuum Science & Technology B, p15, 1986.
18. Fathimulla, A., “Single-step lift-off process using chlorobenzene soak on az4000 resists”, Journal of Vacuum Science & Technology B, p25, 1985.
19. 楊錦煌, “以紫外光微影之高深寬比厚光阻”, 清大電機所碩士論文, 1998.
20. Yoshifumi Mori and Naozo Watanabe, “A new etching solution system, H3PO4-H2O2-H2O for GaAs and its kinetics”, Journal of the Electrochemical Society, p1510, 1978.
21. S.H. Jones and D. K. Walker, “High anisotropic wet chemical etching for GaAs using NH4OH:H2O2:H2O”, Journal of the Electrochemical Society, p1653, 1990.
22. P. H. L. Notten, “The etching of InP solutions: A chemical mechanism”, Journal of the Electrochemical Socirty, p2641, 1984.
23. S. Uekusa and K. Oigawa, “Preferential etching of InP for submicron fabrication with HCl/H3PO4 solution”, Journal of the Electrochemical Society, p671, 1985.
24. R. K. BALL, “Improvements in the topography of AuGeNi-based ohmic contact to n-GaAs”, Thin Solid Films, p55, 1989.
25. A. CHRISTOU, “Solid phase formation in Au:Ge/Ni, Ag/In/Ge, In/Au:Ge GaAs ohmic contact systems”, Solid State Electronics, p141, 1979.
26. R.A. BRUCE, G. R. PIERCY, “An improved Au-Ge-Ni ohmic contact to n-type GaAs”, Solid State Electronics, p729, 1987.
27. D. G. IVEY, D. WANG, and D. YANG, “Au/Ge/Ni ohmic contacts to n-type InP”, Journal of Electronic Materials, p441, 1994.
28. DOUGLAS G. IVEY and PING JIAN, “Metallurgy of ohmic contacts to InP”, Canadian Metallurgical Quarterly, p85, 1995.
29. William A., Hughes and Christopher M. Snowden, “Nonlinear charge control in AlGaAs/GaAs modulation-doped FET’s”, IEEE Transactions on Electron Devices, v34, n8, p159, 1987.
30. H. L. Kwok, “Electronic materials”, 1997.
31. William Liu, “Fundamentals of III-V Devices HBTs, MESFETs, and HFETs/HEMTs”, 1999.
32. K. Winer, “Behavior of excess As in nonstoichiometric Si-doped GaAs”, Journal Applied Physics, p5841, 1992.
33. N. Atique, E. S Harmon, J. C. P. Chang, J. M. Woodall, M. R. Melloch and N. Otsuka, “Electrical and structure properties of Be- and Si-doped low-temperature-grown GaAs”, Journal Applied Physics, p1471, 1995.
34. M. R. Melloch et al., ”Arsenic cluster dynamics in doped GaAs”, Journal Applied Physics, 72, p 3509, 1992.
35. Michael shur, “GaAs Devices and Circuits”, 1986.
36. I. Ohbu, M. Takahama, and K. Hiruma,”Defects in low-temperature-grown GaAs annealed at 800℃”, Appl. Phys. Lett. Vol. 61, pp. 1679, 1992.
37. M. Kaminska, E. R. Weber, Z. Liliental-Weber, R. Leon, Z. U. Rek, “Stoichiometry-related defects in GaAs grown by molecular beam epitaxy at low temperature”, J. Vac. Sci. Technol. B vol. 7, pp. 710, 1989.
38. 梁獻章, “高功率電晶體之製作”, 交大電物所碩士論文, 1997.
39. 劉家銘, “調變摻雜光偵測器之研究”, 清大材料所碩士論文, 2000.