簡易檢索 / 詳目顯示

研究生: 賴識翔
Shih-Hsiang Lai
論文名稱: 奈米碳化合物之合成、結構鑑定與其電子場發射及低介電常數性質之研究
Synthesis and characterization of carbon compound nanostructures for electron field emission and low-k dielectrics
指導教授: 施漢章
Han C. Shih
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 119
中文關鍵詞: 奈米碳化物電子場發射低介電常數電子迴旋共振化學氣相沈積鋁陽極膜
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是以電子迴旋共振電漿輔助化學氣相沉積 (ECR-
    CVD)系統合成出四種不同型態的非晶質碳氟化合物,一種是在矽晶片上沉積具有低介電常數之中間介電層(ILD)的滲氮非晶質碳氟膜(N-doped a-C:F film);其它則是在多孔鋁陽極處理膜上沉積可應用在平面顯示器場發射源和光電元件的非晶質碳氟奈米結構物(包含奈米多孔膜、奈米顆粒以及奈米線)。以ECR-CVD系統施加交流負偏壓和通入四氟化碳、乙炔與氮氣反映氣體的環境下在矽晶板合成具低介電係數之滲氮非晶質碳氟膜。分別以AFM與XPS儀器去分析氮含量對滲氮非晶質碳氟膜在結構和介電性質之影響,同時也量測膜厚與介電常數變化。雖然滲氮非晶質碳氟膜的介電常數隨著氮含量的增加而增加,但滲氮的非晶質碳氟膜的交聯結構卻因此增加,進而提昇了滲氮非晶質碳氟膜熱穩定性。在同一系統中通入四氟化碳、乙炔與氬氣等反映氣體,在多孔鋁陽極處理膜上可直接且快速沉積出非晶質碳氟奈米結構物。經由FESEM與HRTEM等分析儀器可以鑑定出非晶質碳氟奈米結構物之外觀,且由拉曼光譜與XPS可以分析非晶質碳氟奈米結構物之微結構與化學鍵結特性。而非晶質碳氟奈米結構物之電子場發射特性也做進一步探討及研究。由研究結果得之,C-Fx鍵結可以改善這些奈米結構物的電子場發射特性。非晶質碳氟奈米多孔膜具有比其它結構物更低的起始電場(1.8 V/mm)。非晶質碳氟奈米結構物具有比一般非排列性多壁奈米管較高的場加強因子b (2500-4000)。然而由Fowler-Nordheim plot中發現,這些奈米結構物只在中電流區遵守F-N特性,在低電流(< 0.04 mA/cm2 )區及高電流( > 0.7 mA/cm2 )區則偏離F-N特性,分別是因為氟原子效應與吸附效應的影響。


    In this work, various amorphous fluorinated carbon (a-C:F) compounds have been synthesized by an electron cyclotron resonance chemical vapor deposition (ECR-CVD) system in a mixture of CF4, C2H2, and N2 as precursors. N-doped a-C:F thin films was prepared on Si substrate for low-dielectric-constant (low k) materials as an interlayer dielectric (ILD). Others are the a-C:F nanostructures, including nano-porous films, nanoparticles and nanowires on a porous alumina template substrate for the potential application in flat panel display field emitters and optoelectronic devices. The a-C:F films were analyzed by AFM, XPS, as well as the measurements of film thickness and dielectric constant. Although the dielectric constant of the a-C:F film increases with the incorporated nitrogen, the thermal stability of the N-doped a-C:F films can be improved owing to their highly cross-linking structures. The a-C:F nanostructures have been synthesized directly by an ECR-CVD system in a short period of time using the mixture of CF4, C2H2 and Ar as precursors. The a-C:F nanostructure was verified by FESEM and HRTEM and the chemical bonding nature of the a-C:F nanostructures were investigated by Raman spectroscopy and XPS, respectively. The C-Fx bonds would be desirable and improve the electron field-emission properties of the a-C:F nanostructures. The a-C:F nano-porous films with low turn-on field (1.8 V/mm) are apparently lower than other types of the a-C:F nanostructures ( ~ 2.1 V/mm). The a-C:F nanostructures posses a great field-enhancement factor b (2500-4000) than other non-aligned multiwall nanotubes (800-2700). However, the a-C:F nanostructures follow the Fowler-Nordheim characteristics only in the medium emission current region and they both deviate in the low (< 0.04 mA/cm2 ) and high ( > 0.7 mA/cm2 ) emission current region accounting for F atom effect (low emission current) and adsorbate effect (high emission current).

    摘要………………………………………………………………………i Abstract………………………………………………………………….iii Contents…………………………………………………………………..v Table Lists……………………………………………………………...viii Figure Captions………………………………………………………….ix Chapter 1 - Background Review 1.1. Introduction to carbon element………………………………………1 1.2. Forms of carbon……………………………………………………...3 1.2.1. Ideal Graphite……………………………..………………….3 1.2.2. Graphite Whiskers……………………….……………...……3 1.2.3. Carbon Fiber…….……………………………………………6 1.2.4. Carbon Blacks and Carbon Onions………………………..…8 1.2.5. Diamond………………………………………………….....10 1.2.6. Amorphous Carbon…………………………………………10 References…………………………………………………..……..12 Chapter 2 - Literature Review 2.1. Introduction to Carbon Nanostructures…………………………….13 2.1.1. Structure of Carbon Nanotubes……………………………..13 2.1.2. Synthesis processes of Carbon Nanotubes………………….18 2.1.3. Fluorination of carbon nanotubes…………………………..19 2.1.4. Field emission phenomenon………………………………...21 2.2. Introduction to low dielectric constant materials…………………..24 References…………………………………………………………26 Chapter 3 - Experimental and Characterization 3.1. Deposition System – ECRCVD…………………………………….31 3.2. Characterization…………………………………………………….36 3.2.1. Optical Emission Spectroscopy (OES)……………………...36 3.2.2. Atomic Force Microscope (AFM)…………………………..37 3.2.3. Field Emission Scanning Electron Microscopy (FESEM)….37 3.2.4. High-resolution Transmission Electron Microscopy (TEM)..37 3.2.5. Raman Spectroscopy………………………………………..38 3.2.6. Fourier Transform Infrared Spectroscopy (FTIR)…………..38 3.2.7. X-ray Photoelectron Spectroscopy (XPS)…………………..39 3.2.8. Electron Field Emission Measurement…..………………….39 3.2.9. Capacitance-Voltage Characteristics………………………..40 References…………………………………………………………40 Chapter 4 - Results and Discussion 4.1. Synthesis of the template – Anodic alumina……………………….41 References…………………………………………………………45 4.2. Bonding configuration of Carbon Nitride Nanotubes…………..…46 References…………………………………………………………61 4.3. Electron field emission from fluorinated amorphous carbon nano- particles on porous alumina ………………………………………63 References…………………………………………………………75 4.4. Bonding configurations and electron field emission properties of fluorinated carbon nanowires…………………………………..77 References…………………………………………………………89 4.5. Electron field emission from various morphologies of fluorinated amorphous carbon nanostructures…………………………………91 References………………………………………………………..103 4.6. Nitrogen doped a-C:F films for the use as low-dielectric-constant interlayer dielectrics……………………………….……………..105 References……………………….………………….……………118 Chapter 5. Summary…………………………………………………...119 Publications……………………………………………………………120 Vita…………………………………………………………………….126

    Ch.1
    1. J. E. Field, in Properties of Diamond, Field, Ed. Academic Press, London, 281 (1979).
    2. Thomas W. Ebbesen, Carbon nanotubes: preparation and properties (1997).
    3. F. Banhart, T. F□ller, Ph. Redlich and P.M. Ajayan, Chem. Phys. Lett. 269, 349 (1997).

    Ch.2
    1. H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).
    2. S. Iijima, Nature (London) 354, 56 (1991).
    3. D. Qian, E. C. Dickey, Appl. Phys. Lett. 76, 2868 (2000).
    4. O. Zhou, R. M. Fleming, D. W. Murphy, C. T. Chen, R. C. Haddon, A. P. Ramirez, S. H. Glarum, Science, 263, 1744 (1994).
    5. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature, 386, 377 (1997).
    6. J. Kong, N R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho,
    H. Dai, Science, 287, 622 (2000).
    7. W. A. de Heer, A. Chatelaine, D. Ugarte, Science 270, 1179 (1995).
    8. K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999).
    9. S. M. Lee, Y. H. Lee, Appl. Phys. Lett. 76, 2877 (2000).
    10. M. Bockrath, D. H. Cobden, P. L. Mceuen, N. G. Chopra, A. Zettle, Science, 275, 1992 (1997).
    11. S. J. Trans, A. R. M. Verschueuren, C. Dekker, Nature, 393, 49 (1998).
    12. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001).
    13. H. Dai, N. Franklin, J. Han, Appl. Phys. Lett. 73, 1508 (1998).
    14. R. H. Baughman, A. A. Zakhidov, W. A. de Hee, Science, 297, 787 (2002).
    15. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Nature, 391, 62 (1998).
    16. J. W. G. Wild□er, L. C. Venema, A. G. Rinzler, R. E. Smalley, C.
    Dekker, Nature, 391, 59 (1998).
    17. E. Bekyarova, K. Kaneko, M. Yudasaka, K. Murata , D. Kasuya, S. Iijima, Adv. Mater. 14, 973 (2002).
    18. T. W. Ebbesen, P. M. Ajayan, Nature, 358, 200 (1996).
    19. S. Seraphin, D. Zhou, Appl. Phys. Lett. 64, 2087, (1994).
    20. A. Thess, R. Lee, P. Nikoleav, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science, 273, 433 (1998).
    21. T. Guo, P. Nikoleav, A. Thess, D. T. Colbert, R.E. Smalley, Chem. Phys. Lett. 243, 49, (1995).
    22. Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, Appl. Phys. Lett., 76, 2367 (2000).
    23. Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, J. Vac. Sci. Technol. A. 18, 1864 (2000).
    24. A. Thess, R. Lee, P. Nikoleav, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science, 273, 433 (1998).
    25. S. S. Wong, E. Joselevich, A. T. Wooley, C. L. Cheung, and C. M. Lieber, Nature (London) 394, 52 (1998).
    26. J. Liu, A. G. Rinzler, H. Dai, J. Hafner, R. K. Bradley, P. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science 280, 1253 (1998).
    27. E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, and J. L. Margrave, Chem. Phys. Lett. 296, 188 (1998).
    28. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, and J. L. Margrave, J. Phys. Chem. B 103, 4318 (1999).
    29. K. N. Kudin, H. F. Bettinger, and G. E. Scuseria, Phys. Rev. B 63, 045413 (2001)
    30. G. Seifert, T. kohler, and T. Frauenheim, Appl. Phys. Lett 77, 1313 (2000).
    31. K. F. Kelly, I. W. Chiang, E. T. Mickelson, R. H. Hauge, J. L. Margrave, X. Wang, G. E. Scuseria, C. Radloff, and N. J. Halas, Chem. Phys. Lett. 313, 445 (1999).
    32. K. H. An, J. G. Heo, K. G. Jeon, D. J. Bae, C. Jo, C. W. Yang, C. Y. Park, and Y. H. Lee, Appl. Phys. Lett. 80, 4235 (2002).
    33. D. Temple, Mater. Sci. Engin. R24, 185 (1999).
    34. R. H. Fowler and L. Nordheim, Proc. R. Soc. (London), A119, 173 (1928).
    35. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science 269, 1550 (1995).
    36. T. Homma, R. Yamaguchi, Y. Murao, J. Electrochem. Soc. 140, 687 (1993).
    37. T. Usami, K. Shimokawa, M. Yoshimoru, Jpn, J. Appl. Phys. 33, 408 (1994).
    38. P. R. Resnick, Polymer, 31, 312 (1990).
    39. A. E. Fering, B. C. Auman, and E. R. Wonchoba, Macromolecules 26, 2779 (1993).
    40. S. F. Hahn, S. J. Martin, M. L. Mckelvy, and D. W. Partick, Macromolecules 26, 3870 (1993).
    41. J. A. Theil, J. Vac. Sci. Technol. B. 17, 2397 (1999).
    42. W. W. Lee, P. S. Ho, Mater. Res. Soc. Bull. 10, 19 (1997).
    43. H.Yokomichi, T. Hayashi, A. Masuda, Appl. Phys. Lett. 72, 2704 (1998).
    44. K. Endo, T. Tatsumi, Jpn. J. Appl. Phys. 36, L1531 (1997).
    45. K. Endo, T. Tatsumi, J. Appl. Phys. 78, 1370 (1995).
    46. K. Endo, T. Tatsumi, Appl. Phys. Lett. 68, 3656 (1996).
    47. H. Yang, D. J. Tweet, Y. Ma, T. Nguyen, Appl. Phys. Lett. 73, 1514 (1998).
    48. K. Endo, K. Shinoda, T. Tatsumi, J. Appl. Phys. 86, 2739 (1999).

    Ch.3
    1. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981).

    Ch. 4-1
    1. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc., 100, 411 (1953).
    2. R. J. Tonucci, B. L. Justus, A. J. Campillo, and C. E. Ford, Science 258, 783 (1992).
    3. T. W. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science 261, 1316 (1993).
    4. C. A. Huber, T. E. Huber, M. Sadoqi, J. A. Lubin, S. Manalis, C. B. Prater, Science 263, 800 (1994).
    5. J. Li, P. C. papadopoulos, J. Xu, Nature 402, 253 (1999).
    6. O. Jessensky, F. M□ller, and U. G□sele, Appl. Phys. Lett. 72, 1173 (1998).

    Ch. 4-2
    1. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981).
    2. J. S. Suh and J. S. Lee, Appl. Phys. Lett. 75, 2047 (1999).
    3. S. L. Sung, S.H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H.C. Shih, Appl. Phys. Lett. 74, 197 (1999).
    4. S. Iijima, Nature (London) 354, 56 (1991).
    5. S.H. Tsai, F.K. Chiang, T.G. Tsai, F.S. Shieu, H.C. Shih, Thin
    Solid Films 366, 11 (2000).
    6. S. L. Sung, S.H. Tsai, X. W. Liu, and H.C. Shih, J. Mater. Res. 15, 502 (2000).
    7. J. H. Kaufman, S. Metin, and D. D. Saperstein, Phys. Rev. B 39, 13053 (1989).
    8. D. L. Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, Boston, 1991).
    9. A. Heilmann, P. Jutzi, A. Klipp, U. Kreibig, R. Neuendorf, T. Sawitowski, and G. Schmid, Adv. Mater. 10, 398 (1998).
    10. D. Marton, K.J. Boyd, A.H. Al-Bayati, S.S. Todorov, J.W. Rabalais, Phys. Rev. B 73, 118 (1994).
    11. G. Zhang, W. Duan, G. Zhou, and B. Gu, Solid Communications 122, 121 (2002).
    12. M. Barber, J.A. Connor, M.F. Guest, I.H. Hillier, M. Schwarz, M. Stacey, J. Chem. Soc. Faraday Trans. II 69, 551 (1973).
    13. U. Gelius, R.F. Heden, J. Hedman, B.J. Lindberg, R. Manne, R. Nordberg, R. Nordling, K. Siegbahn, Phys. Scr. 2, 70 (1970).
    14. J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, J. M. Jimenez-Mateos, J. Am. Chem. Soc. 118, 8071 (1996).
    15. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 (1970).
    16. R. J. Nemanich and S. A. Solin, Phys. Rev. B 20, 392 (1979).

    Ch. 4-3
    1. S.H. Tsai, F.K. Chiang, T.G. Tsai, F.S. Shieu, H.C. Shih, Thin Solid Films 366, 11 (2000).
    2. X. W. Liu, S. H. Tsai, L. H. Lee, M. X. Yang, A. C. M. Yang, I . N. Lin and H. C. Shih, J. Vac. Sci. Technol B 18, 1840 (2000).
    3. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970).
    4. D.S. Knight, W.B. White, J. Mater. Res. 4, 385 (1989).
    5. G. A. J. Amaratunga and S. R. P. Silva, Appl. Phys. Lett. 68, 2529 (1996).
    6. S. R. P. Silva, G. A. J. Amaratunga and J. R. Barnes , Appl. Phys. Lett. 71, 1477 (1997).
    7. P. G. Collins and A. Zettl, Appl. Phys. Lett. 69, 1969 (1996).
    8. X. Xu, and G. R. Brandes, Appl. Phys. Lett. 74, 2549 (1999).
    9. J. Yu, E. G. Wang, X. D. Bai, Appl. Phys. Lett. 78, 2226 (2001).
    10. S. R. P. Silva and G. A. J. Amaratunga, Thin Solid Films 270, 194 (1995).
    11. S. Han and J. Ihm, Phy. Rev. B 61, 9986 (2000).
    12. J. Robertson, Proc. IVMC’98 (1998), p.162.
    13. W. Schwarzenbach, G. Cunge, J. P. Booth, J. Appl. Phys. 85, 7562 (1999).
    14. K.Teii, M. Hori, T. Goto, N. Ishii, J. Vac. Sci. Technol A 18, 1 (2000).

    Ch. 4-4
    1. S.H. Tsai, F.K. Chiang, T.G. Tsai, F.S. Shieu, H.C. Shih, Thin Solid Films 366, 11 (2000).
    2. X. W. Liu, S. H. Tsai, L. H. Lee, M. X. Yang, ACM Yang, I. N. Lin,
    H. C. Shih, J. Vac. Sci. Technol. B 18, 1840 (2000).
    3. S. L. Sung, S.H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H.C. Shih, Appl. Phys. Lett. 74, 197 (1999).
    4. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981).
    5. S. Han and J. Ihm, Phy. Rev. B 61, 9986 (2000).
    6. W. Schwarzenbach, G. Cunge, J. P. Booth, J. Appl. Phys. 85, 7562 (1999).
    7. K.Teii, M. Hori, T. Goto, N. Ishii, J. Vac. Sci. Technol A 18, 1 (2000).

    Ch. 4-5
    1. S.H. Tsai, F.K. Chiang, T.G. Tsai, F.S. Shieu, and H.C. Shih, Thin Solid Films 366, 11 (2000).
    2. S. L. Sung, S.H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H.C. Shih, Appl. Phys. Lett. 74, 197 (1999).
    3. S. H. Lai, K. P. Huang, Y. M. Pan, Y. L. Chen , L. H. Chan, P. Lin and H. C. Shih, Chem. Phys. Lett. 382, 567 (2003).
    4. J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, Appl. Phys. Lett., 80, 2392 (2002).
    5. D. N. Davydov, P. A. sattari, D. Almawlawi, A. Osika, T. L. Haslett, and M. Moskovits, J. Appl. Phys. 86, 3983 (1999).
    6. R. H. Fowler and L. Nordheim, Proc. R. Soc. (London), A119, 173 (1928).
    7. O. M. K□ttel, O. Groening, C. Emmenegger, L. Schlaobach, Appl. Phys. Lett. 73, 2113 (1998).
    8. C. T. Hsieh, J. M. Chen, H. H. Lin and H. C. Shih, Appl. Phys. Lett., 83, 3383 (2003).
    9. L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, H. C. Shih, T. C. Lin, F. S. Shieu, K. J. Chen and H. C. Cheng, Appl. Phys. Lett., 82, 4334 (2003).
    10. J.-M. Bonard, J.-P. Salvetat, T. St□ckli, L. Forr□, and A. Ch□telain, Appl. Phys. A 69, 245 (1999).
    11. Y. C. Choi, Y. M. Shin, D. J. Bae, S. C. Lim, Y. H. Lee, and B. S. Lee, Diamond Relat. Mater. 10, 1457 (2001).
    12. M. Sveningsson, R. E. Morjan, O. A. Nerushev, Y. Sato, J. B□ckstr□m, E. E. B. Campbell and F. Rohmund, Appl. Phys. A 73, 409 (2001).
    13. S. Dimitrijevic, J. C. Withers, V. P. Mammana, O. R. Monteiro, J. W. Ager, and I. G. Brown, Appl. Phys. Lett. 75, 2680 (1999).
    14. J.-M. Bonard, J.-P. Salvetat, T. Stochli, W. A. de Heer, L. Forro, and A. Chatelain, Appl. Phys. Lett. 73, 918 (1998).
    15. P. G. Collins and A. Zettl, Phys. Rev. B 55, 9391 (1997).
    16. K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 76, 375 (2000).
    17. K. Hata, A. Takakura, and Y. Saito, Surf. Sci. 490, 296 (2001).
    18. C. Kim, Y. S. Choi, S. M. Lee, J. T. Park, B. Kim, and Y. H. Lee, J. Am. Chem. Soc. 124, 9906 (2002).
    19. S. C. Lim, Y. C. Choi, H. J. Jeong, Y. M. Shin, H. H. An, D. J. Bae, Y. H. Lee, and N. S. Lee, J. M. Kim, Adv. Mater. 13, 1563 (2001).
    20. S. Han and J. Ihm, Phy. Rev. B 61, 9986 (2000).

    Ch. 4-6
    1. S. H. Tsai, F. K. Chiang, T. G. Tsai, F. S. Shieu, H. C. Shih, Thin
    Solid Films 366, 11 (2000).
    2. X. W. Liu, S. H. Tsai, L. H. Lee, M. X. Yang, A. C. M. Yang, I. N.
    Lin, H. C. Shih, J Vac Sci Technol B 18, 1840 (2000).
    3. X. W. Liu, J. H. Lin, W. J. Jong, H. C. Shih, Thin Solid Films 409,
    178 (2002).
    4. H. Yokomichi, A. Masuda, J Non-Cryst Solids 271,147 (2000).
    5. F. L. Freire Jr., J Non-Cryst Solids 304, 251 (2002).
    6. K. Endo, T. Tatsumi, Appl Phys Lett 68, 3656 (1996).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE