簡易檢索 / 詳目顯示

研究生: 林夢□
Lin, Meng-Shian
論文名稱: 鈷/鉑多層膜及鋱(鐵)鈷薄膜系統的磁交互耦合作用
Magnetic Exchange Coupling between Co/Pt Multilayers and Tb(Fe)Co Films
指導教授: 賴志煌
Lai, Chih-Huang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 141
中文關鍵詞: 鈷/鉑多層膜鋱(鐵)鈷薄膜磁交互耦合作用
外文關鍵詞: Co/Pt multilayers, Tb(Fe)Co films, magnetic exchange anisotropy
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文著重於鈷/鉑多層膜及鋱(鐵)鈷薄膜系統的磁交互耦合作用之研究。
    首先,鍍製了[Co/Pt]n/CoFe/Cu/CoFe/TbCo薄膜之垂直式自旋閥結構。使用水平流向電流的磁阻電性量測此種垂直式巨磁阻結構,得到高達4.8 %的磁阻值。然而,這種結構仍然存在著造成記錄動作不穩定的層間耦合作用力,且此作用力會隨著鈷鐵/鋱鈷薄膜的淨磁矩增加而增加。因而,研究並鍍製出具有高矯頑場(7 kOe)和磁矩互相抵銷而幾乎沒有淨磁矩存在的垂直式釘札薄膜結構,使得自由層和被釘札層之間的層間耦合作用可以大大地被抑制。故此種垂直式釘札結構可能適合高記錄密度垂直式磁性記憶體的未來應用。
    第二部分研究了[Co/Pt]n/Co/Ru/Co/TbCo薄膜結構的特殊垂直式層間耦合作用力,即此層間耦合作用力的強度會隨著釕間隔層厚度變化而有一振盪的行為產生。當釕間隔層厚度在0.5-1 奈米時,可以觀察到一個強的反鐵磁耦合作用(大約0.38 erg/cm2)。另外,儘管釕厚度維持一定,但是鈷/鉑多層膜的次要磁滯曲線偏移方向仍可以被自由地控制,這是由於鋱鈷的磁矩可以隨著組成和量測溫度的調變而變化。此外,利用X光磁圓偏振能譜來量測鋱鈷內的鋱和鈷之磁矩傾斜角。這個有趣的實驗結果發現,垂直式層間耦合作用隨著釕厚度變化之振盪行為發生的同時,鋱鈷內的鋱和鈷之磁矩傾斜角會有相反方向開合排列的趨勢,代表著此層間耦合作用力作用於鋱鈷內的鋱和鈷之磁矩的確是有著不同的特性。而且,這個實驗結果可以和理論計算結果完美地互相匹配。此種獨特的磁矩行為亦可能可以作為自旋電子元件的未來應用。
    最後,研究具有垂直磁異向性的[Co/Pt]n/Co/TbFeCo薄膜結構之界面交互耦合作用力,並觀察到異常磁滯曲線的發生。此種薄膜結構除了存在著特殊磁矩翻轉行為的特性之外,還具有強的界面交互耦合作用力。隨著鈷/鉑多層膜或鋱鐵鈷薄膜的垂直異向性的增加,此界面交互耦合作用力亦隨之增加。


    The work focuses on the magnetic exchange coupling between Co/Pt multilayers and Tb(Fe)Co films.
    Perpendicular spin-valves composed of Co/Pt multilayers and CoFe/TbCo bilayer were fabricated. The perpendicular GMR ratio of 4.8 % was obtained with the current-in-plane measurements. The interlayer coupling increased with increasing the net magnetization of CoFe/TbCo. A perpendicular pinning structure was proposed which possessed a high perpendicular coercivity (7 kOe) but zero net moment. Consequently, the interlayer coupling between free and pinned layers can be significantly suppressed. This perpendicular pinning structure can be potentially used for high-density perpendicular magnetic random access memory (MRAM) cells.
    In addition, the oscillatory perpendicular interlayer coupling field and strength as a function of Ru spacer thickness were studied for samples with the [Co/Pt]5/Co/Ru/Co/TbCo structure. For Ru thickness in the range of 0.5-1 nm, a strong antiferromagnetic (AF) coupling (J~0.38 erg/cm2) was observed. When AF coupling existed, the coercivity of Co/TbCo bilayers was enhanced because the Co/Pt multilayers stabilized the magnetization direction of Co/TbCo. Consequently, oscillatory coercivity of Co/TbCo with Ru thickness was also observed. Since the magnetization direction of the Co-sublattice in TbCo can be tuned by adjusting composition or measuring temperature, the direction of the shifted minor loop of Co/Pt multilayers can be varied accordingly while keeping the same Ru thickness. Besides, in the perpendicular interlayer coupling of the [Co/Pt]5/Co/Ru/Co/TbCo samples, the canting angles of Tb and Co moments are determined by X-ray magnetic circular dichroism. The results displayed that the interlayer exchange coupling oscillates and aligns Co and Tb moments in opposite directions. In consequence, the canting angles of the Tb and Co moments correlate with the strength of the interlayer coupling and agree with our theoretical calculations as well. The opposite alignment on the TbCo sublattice magnetizations from the interlayer coupling cannot be viewed as an effective magnetic field and thus is unique with potential applications for spintronics devices.
    Finally, I demonstrated the strong interfacial exchange coupling exists between Co/Pt multilayers and TbFeCo films with perpendicular magnetic anisotropy, which resulted in anomalous hysteresis loop. In addition, the interfacial exchange coupling can be increased by increasing the perpendicular magnetic anisotropy of Co/Pt multilayers or TbFeCo layer.

    Abstract (in English)…………………Ⅰ Abstract (in Chinese)…………………Ⅲ Acknowledgment (in Chinese)…………Ⅴ List of Contents………………………Ⅵ List of Tables…………………………Ⅸ List of Figures………………………Ⅸ Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Outline of the Dissertation 4 Chapter 2 BackgroundⅠ -- Amorphous rare earth - transition metal films 5 2.1 Magnetic Properties of RE-TM Films 5 2.1.a Ferrimagnetic RE-TM Films 6 2.1.b Magnetic Properties of RE-TM Films 8 2.1.c Thermomagnetic Properties of RE-TM Films 10 2.1.d Perpendicular Magnetic Anisotropy of RE-TM Films 11 2.1.e Strong Kerr Effect of RE-TM Films 12 2.2 Magnetic Behaviors in ECDL RE-TM Films 14 2.2.a Interfacial Domain Walls in ECDL RE-TM Films 14 2.2.b Magnetization Process in ECDL RE-TM Films 15 2.3 Applications of RE-TM Films 24 2.3.a Magneto-optical (MO) Recording 24 2.3.b Heat-assisted Magnetic Recording (HAMR) 24 2.3.c Magnetoresistive Random Access Memory (MRAM) 28 Chapter 3 Background Ⅱ -- Co/Pt multilayers 35 3.1 Structural and Magnetic Properties of Co/Pt Multilayers 35 3.2 Perpendicular Magnetic Anisotropy of Co/Pt Multilayers 37 3.3 Domain Structure of Co(Fe)/Pt Multilayers 40 3.4 Interlayer Coupling in Co/Pt Multilayers 41 3.5 Magnetization Reversal of Co/Pt Multilayers 44 3.6 Application of Co/Pt Multilayers 46 3.6.a Perpendicular Exchange Coupling 46 3.6.b Perpendicular Magnetic Tunneling Junction (p-MTJ) 50 3.7 Films Composed of Co/Pt MLs and RE-TM Films 52 Chapter 4 Experimental 55 4.1 Sputtering System 55 4.2 Atomic Force Microscopy (AFM) 56 4.3 Vibrating Sample Magnetometer (VSM) 57 4.4 Polar Magneto-optical Kerr Effect (PMOKE) 59 4.5 Inductively Coupled Plasma (ICP) Spectroscopy 61 4.7 Magnetoresistance (MR) Measurement 62 4.8 X-ray Magnetic Circular Dichroism (XMCD) 62 Chapter 5 67 Perpendicular Giant Magnetoresistance of Co/Pt Multilayers and CoFe/TbCo Bilayers 67 5.1 Purpose of Study 67 5.2 Methods and Measurements 68 5.3 Results and Discussion 69 5.4 Summary 77 Chapter 6 78 Perpendicular Interlayer Coupling through Oscillatory RKKY Interaction between Co/Pt Multilayers and Co/TbCo Bilayers 78 6.1 Purpose of Study 78 6.2 Methods and Measurements 81 6.3 Results and Discussion 83 6.4 Summary 89 Chapter 7 90 Effects of Perpendicular Interlayer Coupling Strength on Canting Angles of TbCo-sublattice Magnetization 90 7.1 Purpose of Study 90 7.2 Methods and Measurements 93 7.3 Results and Discussion 94 7.4 Summary 110 Chapter 8 111 Interfacial Exchange Coupling between Co/Pt Multilayers and TbFeCo Films 111 8.1 Purpose of Study 111 8.2 Methods and Measurements 112 8.3 Results and Discussion 113 8.4 Summary 126 Chapter 9 Conclusions 127 Suggestion for Future Works 129 References 130

    1. Wolf, S.A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488-1495 (2001).
    2. Chappert, C., Fert, A. & Van Dau, F.N. The emergence of spin electronics in data storage. Nature Materials 6, 813-823 (2007).
    3. Baibich, M.N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Physical Review Letters 61, 2472-2475 (1988).
    4. Barthelemy, A. et al. Magnetoresistance and spin electronics. Journal of Magnetism and Magnetic Materials 242-245, 68-76 (2002).
    5. Ruderman, M.A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Physical Review 96, 99-102 (1954).
    6. Kasuya, T. A theory of metallic ferro- and antiferromagnetism on Zener's model. Progress of Theoretical Physics 16, 45-57 (1956).
    7. Yosida, K. Magnetic properties of Cu-Mn alloys. Physical Review 106, 893-898 (1957).
    8. Parkin, S.S.P., More, N. & Roche, K.P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures - Co/Ru, Co/Cr, and Fe/Cr. Physical Review Letters 64, 2304-2307 (1990).
    9. Parkin, S.S.P., Bhadra, R. & Roche, K.P. Oscillatory magnetic exchange coupling through thin copper layers. Physical Review Letters 66, 2152-2155 (1991).
    10. Nishimura, N. et al. Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. Journal of Applied Physics 91, 5246-5249 (2002).
    11. Sort, J., Rodmacq, B., Auffret, S. & Dieny, B. Pinned synthetic ferrimagnets with perpendicular anisotropy and tuneable exchange bias. Applied Physics Letters 83, 1800-1802 (2003).
    12. Garcia, F., Fettar, F., Auffret, S., Rodmacq, B. & Dieny, B. Exchange-biased spin valves with perpendicular magnetic anisotropy based on (Co/Pt) multilayers. Journal of Applied Physics 93, 8397-8399 (2003).
    13. Moritz, J., Garcia, F., Toussaint, J.C., Dieny, B. & Nozieres, J.P. Orange peel coupling in multilayers with perpendicular magnetic anisotropy: Application to (Co/Pt)-based exchange-biased spin-valves. Europhysics Letters 65, 123-129 (2004).
    14. Carvello, B. et al. Sizable room-temperature magnetoresistance in cobalt based magnetic tunnel junctions with out-of-plane anisotropy. Applied Physics Letters 92, 102508 (2008).
    15. Park, J.H. et al. Co/Pt multilayer based magnetic tunnel junctions using perpendicular magnetic anisotropy. Journal of Applied Physics 103, 07A917 (2008).
    16. Ducruet, C. et al. Magnetoresistance in Co/Pt based magnetic tunnel junctions with out-of-plane magnetization. Journal of Applied Physics 103, 07A918 (2008).
    17. Ye, L.X. et al. Effect of Annealing and Barrier Thickness on MgO-Based Co/Pt and Co/Pd Multilayered Perpendicular Magnetic Tunnel junctions. IEEE Transactions on Magnetics 44, 3601-3604 (2008).
    18. Redon, O. & Freitas, P.P. Mechanism of exchange anisotropy and thermal stability of spin valves biased with ultrathin TbCo layers. Journal of Applied Physics 83, 2851-2856 (1998).
    19. Hatori, T., Ohmori, H., Tada, M. & Nakagawa, S. MTJ elements with MgO barrier using RE-TM amorphous layers for perpendicular MRAM. IEEE Transactions on Magnetics 43, 2331-2333 (2007).
    20. Ohmori, H., Hatori, T. & Nakagawa, S. Fabrication of MgO barrier for a magnetic tunnel junction in as-deposited state using amorphous RE-TM alloy. Journal of Magnetism and Magnetic Materials 320, 2963-2966 (2008).
    21. Ohmori, H., Hatori, T. & Nakagawa, S. Perpendicular magnetic tunnel junction with tunneling magnetoresistance ratio of 64% using MgO (100) barrier layer prepared at room temperature. Journal of Applied Physics 103, 07A911 (2008).
    22. Nakayama, M. et al. Spin transfer switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy. Journal of Applied Physics 103, 07A710 (2008).
    23. Ye, L.X., Lee, C.M., Chang, Y.J. & Wu, T.H. Effect of annealing and barrier thickness on MgO-based magnetic tunnel junctions with perpendicular anisotropy. Journal of Applied Physics 103, 07F521 (2008).
    24. Rinaldi, S. & Pareti, L. Model for a 2 sub-lattice system with high competing single ion anisotropies. Journal of Applied Physics 50, 7719-7721 (1979).
    25. Sarkis, A. & Callen, E. Magnetic-anisotropy of rare-earth transition-metal compounds. Physical Review B 26, 3870-3877 (1982).
    26. Yehia, S. Torque and magnetization study of the canting model Journal of Magnetism and Magnetic Materials 150, 247-252 (1995).
    27. Fu, H., Wu, T.H. & Mansuripur, M. Direct measurement of subnetwork exchange coupling-constant for ferrimagnets. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 33, 2541-2543 (1994).
    28. Kobayashi, T., Tsuji, H., Tsunashima, S. & Uchiyama, S. Magnetization process of exchange-coupled ferrimagnetic double-layered films. Japanese Journal of Applied Physics 20, 2089-2095 (1981).
    29. Tokunaga, T., Taguchi, M., Fukami, T., Nakaki, Y. & Tsutsumi, K. Study of interface wall energy in exchange-coupled double-layer film. Journal of Applied Physics 67, 4417-4419 (1990).
    30. Chen, B.M., Lai, C.H. & Shieh, H.P.D. Magnetic properties and recording characteristics of high magnetization exchange-coupled double-layer TbFeCo for magnetic flux reading optical recording. Japanese Journal of Applied Physics 40, 4518-4523 (2001).
    31. Lin, C.C., Lai, C.H., Chen, B.M. & Shieh, H.P.D. High magnetization exchange-couple double-layer TbFeCo for magnetic flux reading optical recording. IEEE Transactions on Magnetics 37, 1399-1402 (2001).
    32. Lin, C.C., Lai, C.H., Jiang, R.F. & Shieh, H.P.D. High interfacial exchange energy in TbFeCo exchange-bias films. Journal of Applied Physics 93, 6832-6834 (2003).
    33. Hauet, T., Montaigne, F., Hehn, M., Henry, Y. & Mangin, S. Magnetoresistance in an amorphous exchange-coupled bilayer. Physical Review B 79, 224435 (2009).
    34. Montaigne, F., Mangin, S. & Henry, Y. Transitions of magnetic configuration at the interface of exchange-coupled bilayers: TbFe/GdFe as a model system. Physical Review B 67, 144412 (2003).
    35. Mangin, S., Montaigne, F. & Schuhl, A. Interface domain wall and exchange bias phenomena in ferrimagnetic/ferrimagnetic bilayers. Physical Review B 68, 140404(R) (2003).
    36. Fitzsimmons, M.R., Dufour, C., Dumesnil, K., Dou, J. & Pechan, M. Mechanisms of exchange bias in DyFe2/YFe2 exchange-coupled superlattices. Physical Review B 79, 144425 (2009).
    37. Fitzsimmons, M.R. et al. Vector magnetization depth profile of a Laves-phase exchange-coupled superlattice obtained using a combined approach of micromagnetic simulation and neutron reflectometry. Physical Review B 73, 134413 (2006).
    38. Dumesnil, K., Dutheil, M., Dufour, C. & Mangin, P. Spring magnet behavior in DyFe2/YFe2 Laves phases superlattices. Physical Review B 62, 1136-1140 (2000).
    39. Smith, N. & Cain, W.C. Micromagnetic model of an exchange coupled NiFe-TbCo bilayer. Journal of Applied Physics 69, 2471-2479 (1991).
    40. Cain, W.C. & Kryder, M.H. Investigation of the exchange mechanism in NiFe-TbCo bilayers. Journal of Applied Physics 67, 5722-5724 (1990).
    41. Watson, S.M., Hauet, T., Borchers, J.A., Mangin, S. & Fullerton, E.E. Interfacial magnetic domain wall formation in perpendicular-anisotropy, exchange-spring films. Applied Physics Letters 92, 202507 (2008).
    42. Mangin, S. et al. Influence of interface exchange coupling in perpendicular anisotropy [Pt/Co]50/TbFe bilayers. Physical Review B 78, 024424 (2008).
    43. Wohlfarth, E.P. Curie temperatures of compounds of the heavy rare-earths and yttrium with cobalt. Journal of Physics F-Metal Physics 9, L123-L128 (1979).
    44. Gambino, R.J. & Suzuki, T. Magneto-optical recording materials, Chapter 1-Chapter 2 (The Institute of Electrical and Electronics Engineers, Inc., New York, 2000).
    45. Cullity, B.D. Introduction to magnetic materials (Addison Wesley, New York, 1972).
    46. Nemoto, H., Saga, H., Sukeda, H. & Takahashi, M. Exchange-coupled magnetic bilayer media for thermomagnetic writing and flux detection. Japanese Journal of Applied Physics 38, 1841-1842 (1999).
    47. Suzuki, Y., Takayama, S., Kirino, F. & Ohta, N. Single ion model for perpendicular magnetic-anisotropy in RE-TM amorphous films. IEEE Transactions on Magnetics 23, 2275-2277 (1987).
    48. Wang, Y.J. & Leng, Q.W. Thermal-stability and the origin of perpendicular anisotropy in amorphous Tb-Fe-Co films. Physical Review B 41, 651-657 (1990).
    49. Chaudhar.P, Cuomo, J.J. & Gambino, R.J. Amorphous metallic films for bubble domain applications. IBM Journal of Research and Development 17, 66-68 (1973).
    50. Meiklejohn, W.H., Luborsky, F.E. & Frischmann, P.G. On the origin of Ku in amorphous RE-TM magneto-optic recording materials. IEEE Transactions on Magnetics 23, 2272-2274 (1987).
    51. Egami, T. et al. Anisotropy and coercivity of amorphous RE-TM films. IEEE Transactions on Magnetics 23, 2269-2271 (1987).
    52. Katayama, T., Hirano, M., Koizumi, Y., Kawanishi, K. & Tsushima, T. Different origin of perpendicular anisotropy in amorphous Gd-Fe from Gd-Co films. IEEE Transactions on Magnetics 13, 1603-1605 (1977).
    53. Mizoguchi, T. & Cargill, G.S. Magnetic-anisotropy from dipolar interactions in amorphous ferrimagnetic alloys. Journal of Applied Physics 50, 3570-3582 (1979).
    54. Gambino, R.J. & Suzuki, T. Magneto-optical recording materials, Chapter 7 (The Institute of Electrical and Electronics Engineers, Inc., New York, 2000).
    55. Raasch, D., Reck, J., Mathieu, C. & Hillebrands, B. Exchange stiffness constant and wall energy density of amorphous GdTb-FeCo thin-films. Journal of Applied Physics 76, 1145-1149 (1994).
    56. Mansuripur, M. Domain wall energy in the media of magneto-optical recording. Journal of Applied Physics 66, 6175-6176 (1989).
    57. Liu, T.W., Bobeck, A.H., Nesbitt, E.A., Sherwood, R.C. & Bacon, D.D. Thin-film surface bias on magnetic bubble materials. Journal of Applied Physics 42, 1360-1361 (1971).
    58. Rottmayer, R.E. et al. Heat-assisted magnetic recording. IEEE Transactions on Magnetics 42, 2417-2421 (2006).
    59. Pan, L. & Bogy, D.B. Heat-assisted magnetic recording. Nature Photonics 3, 189-190 (2009).
    60. Challener, W.A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photonics 3, 220-224 (2009).
    61. Stanciu, C.D. et al. All-optical magnetic recording with circularly polarized light. Physical Review Letters 99, 047601 (2007).
    62. Kaiser, C., Panchula, A.F. & Parkin, S.S.P. Finite tunneling spin polarization at the compensation point of rare-earth-metal-transition-metal alloys. Physical Review Letters 95, 047202 (2005).
    63. Yang, D.Z. et al. Inverse giant magnetoresistance in Fe/Cu/Gd1-xCox spin-valves. Physical Review B 74, 024411 (2006).
    64. Bai, X.J. et al. Giant magnetoresistance and tunnel magnetoresistance effects in FeCoGd-based spin valves and magnetic tunnel junctions. Journal of Applied Physics 103, 07F305 (2008).
    65. Shi, J., Tehrani, S. & Scheinfein, M.R. Geometry dependence of magnetization vortices in patterned submicron NiFe elements. Applied Physics Letters 76, 2588-2590 (2000).
    66. Girgis, E. et al. Switching characteristics and magnetization vortices of thin-film cobalt in nanometer-scale patterned arrays. Applied Physics Letters 76, 3780-3782 (2000).
    67. Yuasa, S. Giant tunneling magnetoresistance in MgO-based magnetic tunnel junctions. Journal of the Physical Society of Japan 77, 031001 (2008).
    68. Carcia, P.F. Perpendicular magnetic-anisotropy in Pd/Co and Pt/Co thin-film layered structures. Journal of Applied Physics 63, 5066-5073 (1988).
    69. Gambino, R.J. & Suzuki, T. Magneto-optical recording materials, Chapter 3 (The Institute of Electrical and Electronics Engineers, Inc., New York, 2000).
    70. Li, Z.G. & Carcia, P.F. Microstructural dependence of magnetic properties of Pt/Co multilayer thin films. Journal of Applied Physics 71, 842-848 (1992).
    71. Carcia, P.F., Meinhaldt, A.D. & Suna, A. Perpendicular magnetic-anisotropy in Pd/Co thin-film layered structures. Applied Physics Letters 47, 178-180 (1985).
    72. Johnson, M.T., Bloemen, P.J.H., denBroeder, F.J.A. & deVries, J.J. Magnetic anisotropy in metallic multilayers. Reports on Progress in Physics 59, 1409-1458 (1996).
    73. Nakajima, N. et al. Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular x-ray dichroism study. Physical Review Letters 81, 5229-5232 (1998).
    74. Bruno, P. Tight-binding approach to the orbital magnetic-moment and magnetocrystalline anisotropy of transition-metal monolayers. Physical Review B 39, 865-868 (1989).
    75. Stöhr, J. Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. Journal of Magnetism and Magnetic Materials 200, 470-497 (1999).
    76. Lin, W.W., Sang, H., You, B., Jiang, Z.S. & Xiao, G. Angular dependence of magnetic properties in Co/Pt multilayers with perpendicular magnetic anisotropy. International Journal of Modern Physics B 19, 2562-2567 (2005).
    77. Nemoto, H. & Hosoe, Y. Analysis of interfacial magnetic anisotropy in Co/Pt and Co/Pd multilayer films. Journal of Applied Physics 97, 10J109 (2005).
    78. Maesaka, A. & Ohmori, H. Transmission electron microscopy analysis of lattice strain in epitaxial Co-Pd multilayers. IEEE Transactions on Magnetics 38, 2676-2678 (2002).
    79. Mohanana, S. & Herr, U. Optimization of magnetic properties of Co/Pd multilayers by applying a large persistent biaxial stress. Journal of Applied Physics 102, 093903 (2007).
    80. Hashimoto, S., Ochiai, Y. & Aso, K. Perpendicular magnetic-anisotropy and magnetostriction of sputtered Co/Pd and Co/Pt multilayered films. Journal of Applied Physics 66, 4909-4916 (1989).
    81. Ding, Y.F., Judy, J.H. & Wang, J.P. [CoFe/Pt]xn multilayer films with a small perpendicular magnetic anisotropy. Journal of Applied Physics 97, 10J117 (2005).
    82. Draaisma, H.J.G. & Jonge, W.J.M.d. Magnetization curves of Pd/Co multilayers with perpendicular anisotropy. Journal of Applied Physics 62, 3318-3322 (1987).
    83. Belliard, L. et al. Stripe domains morphology versus layers thickness in CoPt multilayers. Journal of Applied Physics 81, 5315-5317 (1997).
    84. Rushforth, A.W. et al. Magnetic force microscopy studies of the domain structure of Co/Pd multilayers in a magnetic field. Journal of Applied Physics 89, 7534-7536 (2001).
    85. Knepper, J.W. & Yang, F.Y. Oscillatory interlayer coupling in Co/Pt multilayers with perpendicular anisotropy. Physical Review B 71, 224403 (2005).
    86. Wang, D.S., Wu, R.Q. & Freeman, A.J. Magnetocrystalline anisotropy of interfaces - first-principles theory for Co-Cu interface and interpretation by an effective ligand interaction-model. Journal of Magnetism and Magnetic Materials 129, 237-258 (1994).
    87. Wang, D.S., Wu, R.Q., Zhong, L.P. & Freeman, A.J. First principles determination of spin-orbit induced phenomena at surfaces, interfaces and superlattices - magnetocrystalline anisotropy and magnetic circular-dichroism. Journal of Magnetism and Magnetic Materials 140-144, 643-646 (1995).
    88. Imai, S., Inaba, N., Awano, H. & Ota, N. Temperature dependent magnetic properties of a Co/Pd multilayer thin film. Journal of Applied Physics 97, 10J105 (2005).
    89. Davies, J.E. et al. Frustration driven stripe domain formation in Co/Pt multilayer films. Applied Physics Letters 95, 022505 (2009).
    90. Davies, J.E. et al. Anisotropy dependence of irreversible switching in Fe/SmCo and FeNi/FePt exchange spring magnet films. Applied Physics Letters 86, 262503 (2005).
    91. Davies, J.E. et al. Magnetization reversal of Co/Pt multilayers: Microscopic origin of high-field magnetic irreversibility. Physical Review B 70, 224434 (2004).
    92. Davies, J.E., Hellwig, O., Fullerton, E.E. & Liu, K. Temperature-dependent magnetization reversal in (Co/Pt)/Ru multilayers. Physical Review B 77, 014421 (2008).
    93. Maat, S., Takano, K., Parkin, S.S.P. & Fullerton, E.E. Perpendicular exchange bias of Co/Pt multilayers. Physical Review Letters 87, 087202 (2001).
    94. Sang, H., Chien, C.L. & Yang, F.Y. Periodicity dependence of exchange bias in [Co/Pt]N/Co/CoO multilayers with perpendicular anisotropy. Journal of Applied Physics 99, 013906 (2006).
    95. Garcia, F. et al. Exchange bias with perpendicular anisotropy in (Pt-Co)n-FeMn multilayers. IEEE Transactions on Magnetics 38, 2730-2735 (2002).
    96. Garcia, F., Casali, G., Auffret, S., Rodmacq, B. & Dieny, B. Exchange bias in (Pt/Co0.9Fe0.1)n/FeMn multilayers with perpendicular magnetic anisotropy. Journal of Applied Physics 91, 6905-6907 (2002).
    97. Garcia, F., Sort, J., Rodmacq, B., Auffret, S. & Dieny, B. Large anomalous enhancement of perpendicular exchange bias by introduction of a nonmagnetic spacer between the ferromagnetic and antiferromagnetic layers. Applied Physics Letters 83, 3537-3539 (2003).
    98. van Dijken, S., Moritz, J. & Coey, J.M.D. Correlation between perpendicular exchange bias and magnetic anisotropy in IrMn/[Co/Pt](n) and [Pt/Co](n)/IrMn multilayers. Journal of Applied Physics 97, 063907 (2005).
    99. Bruck, S. et al. Exploiting length scales of exchange-bias systems to fully tailor double-shifted hysteresis loops. Advanced Materials 17, 2978-2983 (2005).
    100. Hellwig, O., Kirk, T.L., Kortright, J.B., Berger, A. & Fullerton, E.E. A new phase diagram for layered antiferromagnetic films. Nature Materials 2, 112-116 (2003).
    101. Hellwig, O., Berger, A. & Fullerton, E.E. Domain walls in antiferromagnetically coupled multilayer films. Physical Review Letters 91, 197203 (2003).
    102. Hellwig, O., Berger, A. & Fullerton, E.E. Magnetic reversal and domain structure in perpendicular AF-coupled films. Journal of Magnetism and Magnetic Materials 290-291, 1-7 (2005).
    103. Hellwig, O., Berger, A., Kortright, J.B. & Fullerton, E.E. Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films. Journal of Magnetism and Magnetic Materials 319, 13-55 (2007).
    104. Hellwig, O., Berger, A. & Fullerton, E.E. Magnetic phase separation in artificial A-type antiferromagnetic films. Physical Review B 75, 134416 (2007).
    105. Hauet, T. et al. Field driven ferromagnetic phase nucleation and propagation in antiferromagnetically coupled multilayer films with perpendicular anisotropy. Applied Physics Letters 93, 042505 (2008).
    106. Liu, Z.Y. & Adenwalla, S. Oscillatory interlayer exchange coupling and its temperature dependence in [Pt/Co]3/NiO/[Co/Pt]3 multilayers with perpendicular anisotropy. Physical Review Letters 91, 037207 (2003).
    107. Zhuravlev, M.Y., Tsymbal, E.Y. & Jaswal, S.S. Exchange model for oscillatory interlayer coupling and induced unidirectional anisotropy in [Pt/Co]3/NiO/[Pt/Co]3 multilayers. Physical Review Letters 92, 219703 (2004).
    108. Liu, Z.Y., Yue, L.P., Keavney, D.J. & Adenwalla, S. Oscillatory interlayer exchange coupling in [Pt/Co]n/NiO/[Co/Pt]n multilayers with perpendicular anisotropy: Dependence on NiO and Pt layer thicknesses. Physical Review B 70, 224423 (2004).
    109. Baruth, A. et al. Origin of the interlayer exchange coupling in [Co/Pt]/NiO/[Co/Pt] multilayers studied with XAS, XMCD, and micromagnetic modeling. Physical Review B 74, 054419 (2006).
    110. Giessibl, F.J. Advances in atomic force microscopy. Reviews of Modern Physics 75, 949-983 (2003).
    111. Foner, S. Versatile and sensitive vibrating-sample magnetometer. Review of Scientific Instruments 30, 548-557 (1959).
    112. Qiu, Z.Q. & Bader, S.D. Surface magneto-optic Kerr effect. Review of Scientific Instruments 71, 1243-1255 (2000).
    113. Erskine, J.L. & Stern, E.A. Calculation of the M23 magneto-optical absorption spectrum of ferromagnetic nickel. Physical Review B 12, 5016-5024 (1975).
    114. Schütz, G., Wagner, W., Wilhelm, W. & Kienle, P. Absorption of circularly polarized X rays in iron. Physical Review Letters 58, 737-740 (1987).
    115. Chen, C.T. et al. Experimental confirmation of the X-ray magnetic circular-dichroism sum-rules for iron and cobalt. Physical Review Letters 75, 152-155 (1995).
    116. Stohr, J. et al. Element-specific magnetic microscopy with circularly polarized X-rays. Science 259, 658-661 (1993).
    117. Tjeng, L.H., Idzerda, Y.U., Rudolf, P., Sette, F. & Chen, C.T. Soft-X-ray magnetic circular-dichroism - a new technique for probing magnetic-properties of magnetic-surfaces and ultrathin films. Journal of Magnetism and Magnetic Materials 109, 288-292 (1992).
    118. Thole, B.T., Carra, P., Sette, F. & Vanderlaan, G. X-ray circular-dichroism as a probe of orbital magnetization. Physical Review Letters 68, 1943-1946 (1992).
    119. Carra, P., Thole, B.T., Altarelli, M. & Wang, X.D. X-ray circular-dichroism and local magnetic-fields. Physical Review Letters 70, 694-697 (1993).
    120. Bordel, C. et al. Microscopic origin of the macroscopic magnetic properties of TbFeCoN amorphous thin films. Physical Review B 56, 8149-8155 (1997).
    121. Guan, Y., Dios, Z., Arena, D.A., Cheng, L. & Bailey, W.E. Transmission-mode X-ray magnetic circular dichroism characterization of moment alignment in Tb-doped Ni81Fe19. Journal of Applied Physics 97, 10A719 (2005).
    122. Mangin, S. et al. Magnetization reversal in exchange-coupled GdFe/TbFe studied by X-ray magnetic circular dichroism. Physical Review B 70, 014401 (2004).
    123. Lin, C.C., Lai, C.H., Wei, D.H., Hsu, Y.J. & Shieh, H.P.D. Thickness dependence of Co anisotropy in TbFe/Co exchange-coupled bilayers. Journal of Applied Physics 95, 6846-6848 (2004).
    124. Wei, D.H. et al. Layer- and lateral-resolved magnetization studies using photoemission electron microscopy. Journal of Magnetism and Magnetic Materials 282, 49-52 (2004).
    125. Wei, D.H., Hsu, Y.J., Sun, J.H., Lin, C.C. & Lai, C.H. Probing the magnetization vectors in layered magnetic structures. Journal of Electron Spectroscopy and Related Phenomena 144-147, 737-739 (2005).
    126. Lai, C.H., Wu, Z.H., Lin, C.C. & Huang, P.H. Thermally assisted-writing giant magnetoresistance with perpendicular magnetization. Journal of Applied Physics 97, 10C511 (2005).
    127. Kirk, T.L., Hellwig, O. & Fullerton, E.E. Coercivity mechanisms in positive exchange-biased Co films and Co/Pt multilayers. Physical Review B 65, 224426 (2002).
    128. Kagerer, B., Binek, C. & Kleemann, W. Freezing field dependence of the exchange bias in uniaxial FeF2-CoPt heterosystems with perpendicular anisotropy. Journal of Magnetism and Magnetic Materials 217, 139-146 (2000).
    129. Lai, C.H., Lin, C.C., Chen, B.M., Shieh, H.P.D. & Chang, C.R. Positive giant magnetoresistance in ferrimagnetic/Cu/ferrimagnetic films. Journal of Applied Physics 89, 7124-7126 (2001).
    130. Kools, J.C.S., Kula, W., Mauri, D. & Lin, T. Effect of finite magnetic film thickness on Néel coupling in spin valves. Journal of Applied Physics 85, 4466-4468 (1999).
    131. Weller, D. et al. Growth, structural, and magnetic properties of high coercivity Co/Pt multilayers. Journal of Applied Physics 89, 7525-7527 (2001).
    132. Kim, T.W. & Gambino, R.J. Composition dependence of the Hall effect in amorphous TbxCo1-x thin films. Journal of Applied Physics 87, 1869-1873 (2000).
    133. Wu, Z.H., Lai, C.H., Huang, S.H. & Lin, W.C. Thermally assisted writing for perpendicular MRAM. Journal of Magnetism and Magnetic Materials 304, 93-96 (2006).
    134. Guo, V.W. et al. A survey of anisotropy measurement techniques and study of thickness effect on interfacial and volume anisotropies in Co/Pt multilayer media. Journal of Applied Physics 99, 08E918 (2006).
    135. Yafet, Y. RKKY interactions across yttrium layers in Gd-Y superlattices. Journal of Applied Physics 61, 4058-4060 (1987).
    136. Slonczewski, J.C. Fluctuation mechanism for biquadratic exchange coupling in magnetic multilayers. Physical Review Letters 67, 3172-3175 (1991).
    137. Lai, C.H. & Lu, K.H. Biquadratic coupling through nano-oxide layers in pinned layers of IrMn-based spin valves. Journal of Applied Physics 93, 8412-8414 (2003).
    138. Stiles, M.D. Exchange coupling in magnetic heterostructures. Physical Review B 48, 7238-7259 (1993).
    139. Stiles, M.D. Interlayer exchange coupling. Journal of Magnetism and Magnetic Materials 200, 322-337 (1999).
    140. Bruno, P. Theory of interlayer magnetic coupling. Physical Review B 52, 411-439 (1995).
    141. Bruno, P. Theory of interlayer exchange interactions in magnetic multilayers. Journal of Physics:Condensed Matter 11, 9403-9419 (1999).
    142. Baltensperger, W. & Helman, J.S. Ruderman-Kittel coupling between ferromagnets separated by a nonmagnetic layer. Applied Physics Letters 57, 2954-2955 (1990).
    143. Wu, Y.Z. et al. Magnetic stripe domains in coupled magnetic sandwiches. Physical Review Letters 93, 117205 (2004).
    144. Hansen, P., Clausen, C., Much, G., Rosenkranz, M. & Witter, K. Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Gd, Tb, Fe, Co. Journal of Applied Physics 66, 756-767 (1989).
    145. Bauer, M., Semerad, R. & Kinder, H. YBCO films on metal substrates with biaxially aligned MgO buffer layers. IEEE Transactions on Applied Superconductivity 9, 1502-1505 (1999).
    146. Xie, Z.H. et al. Microstructural response of TiN monolithic and multilayer coatings during microscratch testing. Journal of Materials Research 22, 2312-2318 (2007).
    147. Dieny, B. Giant magnetoresistance in spin-valve multilayers. Journal of Magnetism and Magnetic Materials 136, 335-359 (1994).
    148. Sbiaa, R., Legall, H., Braik, Y., Desvignes, J.M. & Yurchenko, S. Ferromagnetic and antiferromagnetic exchange coupling in magnetooptical bilayers with planar and perpendicular anisotropy. IEEE Transactions on Magnetics 31, 3274-3276 (1995).
    149. Sbiaa, R., Le Gall, H. & Desvignes, J.M. Magnetization reorientation in ferrimagnetic Gd27.5Fe59Co13.5/Dy28Fe60Co12 double layers. Physical Review B 57, 7887-7891 (1998).
    150. Sbiaa, R., Le Gall, H., Desvignes, J.M. & El Harfaoui, M. Magnetization processes in exchange-coupled double-layer films with in-plane and perpendicular anisotropy. Journal of Magnetism and Magnetic Materials 183, 247-253 (1998).
    151. Ayres, A.M. & Marinero, E.E. Exchange coupling in rare-earth/transition-metal multilayers for magnetic super-resolution. Journal of Applied Physics 79, 5680-5682 (1996).
    152. Nishimura, N., Hiroki, T., Okada, T. & Tsunashima, S. Transition from in-plane to perpendicular magnetization in MSR magneto-optical disks. Journal of Applied Physics 79, 5683-5685 (1996).
    153. Nishimura, N. & Tsunashima, S. Control of the exchange-coupling force in magnetic super resolution magnetooptical recording media with in-plane magnetization layers. Japanese Journal of Applied Physics 37, 128-132 (1998).
    154. Esho, S. Anomalous magneto-optical hysteresis loops of sputtered Gd-Co films. Japanese Journal of Applied Physics 15, 93-98 (1976).
    155. Amatsu, M., Honda, S. & Kusuda, T. Anomalous hysteresis loops and domain observation in Gd-Fe co-evaporated films. IEEE Transactions on Magnetics 13, 1612-1614 (1977).
    156. Tsujimoto, H. & Sakurai, Y. Temperature-dependence of anomalous loop in double-layered amorphous GdCo film. Japanese Journal of Applied Physics 22, 1845-1850 (1983).
    157. Rahman, M.T. et al. Controlling magnetization reversal in Co/Pt nanostructures with perpendicular anisotropy. Applied Physics Letters 94, 042507 (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE