簡易檢索 / 詳目顯示

研究生: 吳倍任
Pei-Jen Wu
論文名稱: I. 應用氣相層析質譜儀於大氣中揮發性有機物之量測; II. 綠色萃取技術於傳統中草藥(大黃及蛇苺)有效成分分離及應用
Part I. Applications of Gas Chromatography/Mass Spectrometry for measurements of Volatile Organic Compounds in ambient air; Part II. Separation and Application of bio-active components in Rheum and Duchesnea Chrysantha using Green extraction technique
指導教授: 羅俊光
Jiunn-Guang Lo
瞿港華
Kong-Hwa Chiu
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 217
中文關鍵詞: 氣相層析質譜分析系統不鏽鋼瓶環境量測超臨界流體萃取中草藥液相層析技術
外文關鍵詞: gas chromatography/ mass spectrometer, canister, environmental measurement, supercritical fluid extraction, Chinese herbals, liquid chromatography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究分成兩個部份,第一部份為利用不鏽鋼瓶/自動化去分析環境中的揮發性氣體及量測不同的污染來源,所設計的自動化氣相層析質譜分析系統可同時準確分析廣泛的物種(C2-C10 HCs、CFCs、TO-14A及TO-15)約百餘種之非極性物種及部分的極性物種,且因系統高度自動化,在提高分析品質及節省人力、時間方面較現今相關分析方法(TO-14A、TO-15、NIEA A715.11B)優越,大部份目標化合物再現性在3% 以內,而實際方法偵測極限約為1pptv~0.1ppbv,在實測部分,包含應用於瞭解都會區、高科技園區、廢水處理廠及加油站周圍環境中污染物濃度的空間分布趨勢。量測所得之數據配合氣象及地形等相關資料進一步深入探討,用以建立各污染源指紋圖譜、各項評估及特殊指標的應用。
    第二部份為利用超臨界流體及高壓水萃取技術去萃取傳統中草藥(大黃及蛇苺)中的有效成分,為純化其有效成分及建立指紋圖譜,本研究利用液相層析技術來分離純化,在蛇苺萃取研究方面,顯示不同季節的蛇苺其有效成分含量分佈比例不同,夏季蛇苺成份具有抗癌的效果,而冬季蛇苺則具有良好的抗氧化能力,在大黃的萃取研究方面,本研究建立一快速分離大黃中有效成分大黃酚的萃取純化方法,乃利用超臨界流體萃取搭配製備級的液相層析技術可以快速且大量的分離出大黃中有效成分大黃酚。


    This thesis contains two parts. In the first part, measurement of various environment gases and pollution source are based on canister/automatic gas chromatography/ mass spectrometer. The designed Canister-Automated GC/MS System was to analyze simultaneously widespread species (C2-C10 HCs, CFCs, compounds). Because of its highly automated, the system designed has better data quality, manpower saving, and analytical efficiency than other methods. The precision of this system for most target compounds was in 3% ,and the method detection limits (MDLs) were in the range of 0.1 ppbv to 1 ppbv. The system has been practically applied to demonstrate the spatial distribution of pollutant concentrations in urban, industrial area, gas stations, and wastewater treatment plants. Acquired data with the combination of local meteorological information were discussed further to establish fingerprints of pollutant sources, and to evaluate the quality of air.
    In the second part, this study is to extract the active components of the traditional Chinese herbals (Rheum and Duchesnea Chrysantha) using supercritical fluid extraction (SFE) and pressurized water extraction techniques. In order to set up the finger print databases, the active components in traditional Chinese herbals were purified and characterization using preparative liquid chromatography (prep. LC), liquid chromatography mass spectrum (LC-MS). The study showed that the distributions of principal components of Duchesneas harvested in different seasons were different. Summer Duchesneas had obvious poisonous effect on prostate cancer cell lines and Winter Duchesneas had obvious antioxidant capacity. Another study using supercritical fluid extraction, along with preparative-HPLC, provide an efficient separation and purification method for Chrysophanol.

    Part I Contents CH1 Introduction 1 1-1 Research motives 1 1-2 Research purposes 3 CH 2 Literature review 6 2-1 introduction to Volatile Organic Compounds (VOCs) 6 2-2 VOCs Source in Hsinchu Science Park 8 2-3 Comparison of VOCs analysis methods 10 2-4 Process of GC analysis technology in air pollutants 13 CH 3 Analytical Method for VOCs 20 3-1 Sampling Process 20 3-2 Analysis system 22 3-3 Analysis method Process 23 3-4. Method Assessment 27 CH4 GC/MS for Monitoring of VOCs 39 4-1 Measurement of Non-Methane Hydrocarbons in Taipei City and Their Impact on Ozone Formation in Relation to Air Quality 39 4-1.2 Experimental 40 4-1.3 Results from neartime measurements 44 4-1.4 Diurnal variation of NMHCs 45 4-1.5 Reactivity of NMHCs towards ozone formation 45 4-1.6 Diurnal variation of Ozone 46 4-1.7 Benzene and Toluene 47 4-1.8 Emissions in tunnels 48 4-1.9 Conclusions 49 4-2 Determination and impact of volatile organics emitted during rush hours in the ambient air around gasoline stations 57 4-2.1 Introduction 57 4-2.2 Methodology 59 4-2.3 Characteristics of the ambient air around gasoline stations 60 4-2.4 Effect of vapor recovery systems 60 4-2.5 Comparison of VOCs from different emission sources 61 4-2.6 Impact Assessment 62 4-2.7 Conclusions 64 4-3 Distribution of volatile organic compounds over a Semiconductor Industrial Park in Taiwan 73 4-3.1 Introduction 73 4-3.2 Experimental section 76 4-3.3 VOCs concentrations in Hsin chu science park 78 4-3.4 Zonal distribution of VOCs. 80 4-3.5 Seasonal variation of VOC at selected sampling sites. 81 4-3.6 Source Identification of VOCs. 84 4-3.7 Conclusions 85 4-4 Sampling and Analysis of Volatile Organics Emitted from Wastewater Treatment Plant and Drain System of an Industrial Science Park 103 4-4.1 Introduction 103 4-4.2 Experimental 105 4-4.3 The chemical species and average concentration of VOCs 108 4-4.4 Fugitive VOC emissions at various stages of treatment 109 4-4.5 24-h VOC monitoring and emission estimate 111 4-4.6 Major VOC species in the air samples from drainage system 112 4-4.7 Distribution of VOCs at a distance to the park and residential area 114 4-4.8 VOC identified in the wastewater samples 114 4-4.9 Comparison of the VOC distribution 115 4-4.10 Conclusions 117 4-5 Self-fabricated Pre-Concentration Module coupled with GC/MS for Measurement of VOCs in Ambient Air 130 4-5.2 Instrumentation 131 4-5.3 Pre-Concentration and Thermal-Desorption 132 4-5.4 Test for Reproducibility and linearity 133 4-5.5 Test for Pre-Concentration 133 4-5.6 Field test for Measurement 135 4-5.7. Conclusion 135 4-6 Experimental factors biasing volatile organic compound monitoring using GCMS with canisters 143 4-6.1 Introduction 143 4-6.2 Experiments 144 4-6.3 Optimization of operating conditions 144 4-6.4 Effect of humidity 146 4-6.7 Amendments to Standard methods 147 4-6.8 Conclusions 148 Ch5 Conclusions 161 Part II Contents CH 1 Introduction 1 CH 2 Literature review 3 2-1 Extraction and Preliminary Separation of Chinese Herbal Medicine 3 2-2 Analytical Conditions of HPLC 6 2-3 Growth and Apoptosis of Cancer Cell 7 CH 3 Seasonal variation in the contents of the active principles of Duchesnea chrysantha by using high pressurized water 10 3-1 Introduction 10 3-2 Experimental Methods 11 3-3 Results and Discussions 14 3-3.2 Influence of CHEs on inhibition of prostate cancer cell line (PC3) 14 3-3.3 Influence of CHEs on cell cycle of prostate cancer cell line (PC3) 15 3-3.4 Antioxidant activities experiment of cells 15 3-4 Conclusions 16 CH 4 Rapidly separated Chrysophanol from traditional medicinal herbs by using Supercritical Carbon Dioxide 22 4-1 Introduction 22 4-2 Experimental 24 4-3 Results and Discussion 25 4-3.1 Optimization of HPLC Analysis Condition 25 4-3.2 Comparison of supercritical extraction and boiled water extraction methods 26 4-3.3 Optimized extraction condition of supercritical fluid: 26 4-3.4 Purification method and conditions 27 4-3.5 Ingredient comparison of chrysophanol contained in traditional Chinese herbal medicines: 28 4-3.6 Comparison of supercritical extraction and conventional extraction methods: 28 4-4Conclusions 29 CH 5 Conclusions 38

    1. Lodge, J. P. Selections of the Smoke of London, Two Prophecies, Maxwell Reprint Co., Elmsford, NY, 1969.
    2. Molina, L.T.; Rowland, F. S. Nature 1974,249,810-812.
    3. Molina, L. T.and Molina,M.J.and Wang,F.C.-Y. Science 1987, 238,1253-1257.
    4. Jamshidi, E.; Ebrahim, H. Ale. Chemical Engineering and Processing 2008, 47(9-10), 1567-1577.
    5. United Nations Environmental Programme (UNEP), Report on the fourth meeting of the parties on substances that deplete the ozone layer, Copenhagen, 1992.
    6. Chiu, K. H.; Sree, U.; Tseng, S. H.; Wu, C. H.; Lo, J. G.. Atmospheric Environment (2005), 39(5), 941-955.
    7. Ouyang, M.; Yuan, C.; Muisener, R. J.; Boulares, A.; Koberstein, J. T. Chemistry of Materials (2000), 12(6), 1591-1596.
    8. Koren, H. S., Devlin, R. B., Graham, D. E., Mann, R.; McDonnell, W. F. Am Rev Respir Dis. 1989, 139, 407-415.
    9. Cody, R. P., Weisel, C. P., Birnbaum, G.; Lioy P. J. Environ. Res. 1992, 58, 184-194.
    10. Carter, W.P.L., Fredrick, W. L. Atmo. Environ. 1991, 25(12), 2771-2806.
    11. Hsieh, C.C., Chang, K.H., Wang, L.T. Chemosphere 1999, 39(5), 731-744.
    12. Tsai, D. H.; Wang, J. L.; Wang, C. H.; Chan, C.C. Journal of Environmental Monitoring 2008, 10(1), 109-118
    13. Walton, K.; Dorne, J. L.; Renwick, A. G. Food and Chemical Toxicology 2001, 39(7), 667-680
    14. Davis, M. E.; Blicharz, A. P.; Hart, J. E.; Laden, F.; Garshick, E.; Smith, T. J. Environmental Science & Technology 2007, 41(20), 7152-7158.
    15. Taiwan Environmental Protection Administration,(www.epa.gov.tw).
    16. Sexton, K.; Adgate, J. L Environmental Science and Technology, 2004, 38(9), 2593-2602
    17. Carter, W.P.L., Fredrick, W. L. Atmo. Environ. 1991, 25(12), 2771-2806.
    18. U.S. EPA. Compendium method TO-14A, The determination of volatile organic compounds (VOCs) in ambient air using specially prepared canisters with subsequent analysis by gas chromatography; 1999.
    19. U.S. EPA. Compendium method TO-15, The determination of volatile organic compounds (VOCs) in air collected in specially prepared canisters and analyzed by gas chromatography/mass spectrometry(GC/MS); 1999.
    20. U.S. EPA. Compendium method TO-16, Long-path open-path Fourier transform infrared monitoring of atmospheric gases; 1996.
    21. U.S. EPA. Compendium method TO-17, The determination of volatile organic compounds (VOCs) in air using active sampling onto sorbent tubes; 1997.
    22. Zimmerman, P.R. Testing of Hydrocarbon Emissions from Vegetation, Leaf Litter, and Aquatic Surfaces, and Development of A Methodology for Compiling Biogenic Emission Inventories”, EPA-450/4-70-004, U.S. EPA, Washington, D.C, 1979.
    23. United Nations Environmental Programme (UNEP), Report on the fourth meeting of the parties on substances that deplete the ozone layer, Copenhagen, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE