研究生: |
李國銓 Kuo-Chuan Lee |
---|---|
論文名稱: |
在無線感測器網路中以德洛內三角形為基礎的感測器佈置方式 A Delaunay Triangulation Based Method for Wireless Sensor Network Deployment |
指導教授: |
鍾葉青
Yeh-Ching Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 感測器網路 、覆蓋率 、德洛內三角形 、芙若依圖形 、障礙物 、感測器佈置 |
外文關鍵詞: | sensor network, coverage, delaunay triangulation, voronoi diagram, obstacle, sensor deployment |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於設計感測器網路而言,感測器的佈置方式是一項很重要的議題。假使感測器能夠有效率的被佈置在偵測環境裡,將會提高整體監控的能力,也可以降低感測器網路建構的成本。此篇論文的目的即是研究如何佈置感測器,才能使得覆蓋率最大化和感測器的使用量最小化。在機率偵測模式下,我們提出了遞增式的佈置演算法DT-Score。我們利用計算幾何裡的德洛內三角形來找尋離感測器最遠且覆蓋率最弱的位置,並且額外考慮了障礙物會阻隔訊號的影響和特殊佈置的區域。為了評估DT-Score演算法,我們實作了DT-Score、MAX_MIN_COV和MAX_AVG_COV等演算法。並且在這些演算法之間作了許多的模擬比較和個案研究。模擬結果顯示,一般而言,DT-Score和MAX_MIN_COV的覆蓋率表現在不同的參數設定下各有勝場。而DT-Score和MAX_MIN_COV在大部分的情況下皆表現的比MAX_AVG_COV好。既然MAX_MIN_COV和MAX_AVG_COV受限於格點數和感測器使用量,在部分情況下,當感測器增加到超過一個界線的時候,MAX_MIN_COV和MAX_AVG_COV將會造成不知如何佈置的情形。在這種情況下,我們可以應用DT-Score接下去佈置感測器,便可以繼續提升整體環境的覆蓋率。這種情況指出DT-Score與MAX_MIN_COV和MAX_AVG_COV可以成為互補應用的佈置方法。
Sensor deployment is an important issue in designing sensor network. If the sensors can be deployed efficiently in a sense field, it will enhance the monitoring ability of overall environment and lower the cost of the sensor network constructing. The goal of this paper is to study how to deploy sensors to maximize the coverage and minimize the sensors used. We propose an incremental algorithm, DT-Score, for sensor deployment with probability sensing model. In DT-Score, we use the Delaunay Triangulation of Computational Geometry to find the weakest position. Our algorithm additionally considers the influence of signals cut off by obstacles and special area with preferential coverage. To evaluate the DT-Score algorithm, we have implemented the DT-score algorithm along with MAX_AVG_COV and MAX_MIN_COV algorithms. We performed a wide range of simulations and case-studies among them. The simulation results show that, in general, the coverage of DT-Score is better than that of MAX_MIN_COV in some cases and vice versa. Both DT-Score and MAX_MIN_COV produce better coverage than MAX_AVG_COV for most of the test cases. Since the coverage and execution time of MAX_AVG_COV and MAX_MIN_COV are limited by number of grid points and sensor used, in some cases, the coverage of MAX_AVG_COV and MAX_MIN_COV will not increase when the number of sensors used over a threshold. In these cases, by applying the DT-Score after the coverage of MAX_AVG_COV and MAX_MIN_COV reached a saturation point, the coverage will increase. This indicates that the DT-score algorithm can be complementary to MAX_AVG_COV and MAX_MIN_COV algorithms.
[1] F. Aurenhammer, “Voronoi Diagrams – A Survey of fundamental Geometric Data Structure”, ACM Computing Surveys 23, pp. 345-405, 1991.
[2] E. S. Biagioni and G. Sasaki, “Wireless Sensor Placement For Reliable and Efficient Data Collection”, Proc. IEEE 36th Hawaii International Conference on System Sciences (HICSS’03), 2003.
[3] K. Chakrabarty, S. S. Iyengar, H. Qi and E. Cho, “Grid coverage for surveillance and target location in distributed sensor networks”, IEEE Transactions on Computers, vol. 51, pp. 1448-1453, 2002.
[4] K. Chakrabarty, S. S. Iyengar, H. Qi and E. Cho, “Coding Theory Framework for Target Location in Distributed Sensor Networks”, Proc. International Symposium on Information Technology: Coding and Computing, pp.130-134, 2001.
[5] Thomas Clouqueur, Veradej Phipatanasuphorn, Parameswaran Ramanathan, Kewal K. Saluja, “Sensor Deployment Strategy for Detection of Targets Traversing a Region”, Mobile Networks and Applications, Vol. 8, No. 4, pp.
453-461 , August 2003.
[6] S. S. Dhillon and K. Chakrabarty, "Sensor placement for effective coverage and surveillance in distributed sensor networks", Proc. IEEE Wireless Communications and Networking Conference, pp. 1609-1614, 2003.
[7] D. Du and F. Hwang S. Fortune, „Voronoi diagrams and Delaunay triangulations“, Euclidean Geometry and Computers, 1992.
[8] Stefan Funke, Alexander Kesselman, Zvi Lotker, Michael Segal, “Improved Approximation Algorithms for Connected Sensor Cover”, ADHOC-NOW 2004, pp. 56-69, 2004.
[9] H. Gupta, S. Das, Q. Gu, "Connected Sensor Cover: Self-Organization of Sensor Networks for Efficient Query Execution", Proc. ACM MobiHoc, June 2003.
[10] Chi-Fu Huang and Yu-Chee Tseng, “The Coverage Problem in a Wireless Sensor Network”, Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications, Pages: 115 - 121 , 2003.
[11] M. Ishizuka and M. Aida, “Performance study of node placement in sensor networks”, Proc. IEEE 24th International Conference on Distributed Computing Systems Workshops - W5: ADSN (ICDCSW'04), pp. 598-603, 2004.
[12] Xiang-Yang Li , Peng-Jun Wan, Frieder, O., “Coverage in wireless ad hoc sensor networks”, IEEE Transactions on Computers, On page(s): 753- 763, June 2003.
[13] Seapahn Meguerdichian1, Farinaz Koushanfar2, Gang Qu3, Miodrag Potkonjak1, “Exposure In Wireless Ad-Hoc Sensor Networks”, Proceedings of the 7th annual international conference on Mobile computing and networking, Pages: 139 - 150, 2001.
[14] Seapahn Meguerdichian1, Farinaz Koushanfar2, Miodrag Potkonjak1, Mani B. Srivastava2, “Coverage Problems in Wireless Ad-hoc Sensor Networks”, IEEE Infocom 2001, Vol. 3, pp. 1380-1387, April 2001.
[15] J. O’Rourke. Art Theorems and Algorithms. Oxford University, New York, NY, 1987.
[16] Veradej Phipatanasuphorn, Parameswaran Ramanathan. "Vulnerability of Sensor Networks to Unauthorized Traversal and Monitoring," IEEE Transactions on Computers, vol. 53, no. 3, pp. , 364-369, March 2004.
[17] S. Shakkottai, R. Srikant, N. Shroff, "Unreliable Sensor Grids: Coverage, Connectivity and Diameter," Proc. IEEE Infocom, San Francisco, March 2003.
[18] G. Veltri, Q. Huang, G. Qu and M. Potkonjak, “Minimal and maximal exposure path algorithms for wireless embedded sensor networks”, 1st ACM Conference on Embedded Networked Sensor Systems (SenSys'03), November 2003.
[19] Guiling Wang, Guohong Cao, and Tom La Porta, “Movement-Assisted Sensor Deployment”, IEEE INFOCOM, Hong Kong, March 2004.
[20] Y. Zou and K. Chakrabarty, "Sensor deployment and target localization based on virtual forces", IEEE INFOCOM Conference, pp. 1293-1303, 2003.
[21] Z. Zhou, S. Das, and H. Gupta, "Connected k-coverage problem. in sensor networks," Proceedings of the International Conference on Computer Communications and Networks (IC3N), 2004.
[22] Zongheng Zhou, Samir Das, Himanshu Gupta, “Variable Radii Connected Sensor Cover in Sensor Networks”, IEEE SECON 2004, October 2004.