研究生: |
楊欣翰 Yang, Hsin-Han |
---|---|
論文名稱: |
間接式電容耦合氫氣/氬氣電漿研究 -特製電壓波型電漿源模擬分析 Plasma-Enhanced Atomic Layer Deposition and Simulation by CFD using H2/Ar Plasma - Effect of Tailored Voltage Waveforms |
指導教授: |
陳金順
Chen, Gen-Shun |
口試委員: |
柳克強
Leou, Keh-Chyang 張家豪 Chang, Chia-Hao |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 168 |
中文關鍵詞: | 氫氣電漿 、原子層沉積 、特製電壓波型 、電容式耦合電漿 |
外文關鍵詞: | Hydrogen Plasma, ALD, CCP, Tailored Waveform Voltage |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
尺寸逐漸縮小,電漿的使用時常在關鍵製程中佔有一席之地。本研究探討在現今電漿輔助原子層沉積製程(PEALD)中常用之氫氣/氬氣電漿,使用電容式耦合電漿(CCP)的結構,在平行電極版中央加入一層接地的網狀導體電極(間接式電容耦合電漿),並且使用CFD軟體之流體模組進行電漿模擬。此模擬模型之目的,在於增加H原子在下腔體的數量,另一方面盡可能地減少離子轟擊。
模擬中利用而為流體模型模擬電漿,其中包含9種粒子與43條反應式。活性粒子的行為為本研究的重點。在電漿點起後,發現大部分活性粒子的密度分布皆與整體電漿一樣在軸向呈現鐘型分布,而H-離子由於位能井的緣故,密度之軸向梯度非常大,高度集中於電漿中央;H2+以及Ar+則相反地呈現兩側密度高於中央的分布,本研究分析反應式解釋此現象。。
在基礎模擬模型建立後,探討輸入特製電壓波型(Tailored Voltage Waveforms, TVWs)對電漿特性之影響,本研究在加壓電極輸入之TVWs由兩個電壓相等的正弦波組成,分別為基頻13.56 MHz與第一個諧波頻率27.12 MHz,改變兩頻率間的相位差以產生出不同波型,分別定義為V_0與V_90。
模擬結果顯示,成膜粒子H原子抵達基板的數量,原先13.56 MHz輸入波型優於V_0與V_90,H原子至基板中央通量13.56 MHz約為V_0之2.77倍;而在預防離子轟擊方面V_0則表現最優秀,主要離子H3+抵達基板表面的通量13.56 MHz為V_0的1.59倍。為了比較其整體之優劣,定義H原子/H3+離子之通量密度比作為指標,其結果顯示13.56 MHz、V_0與V_90三波型之H原子/H3+離子通量密度比分別30、54、5,此結果說明V_0波型中有更高的成膜粒子通量抵達基板,而有更小的離子轟擊,因此判斷V_0波型整體來說較為優秀。
Plasma plays an important role in semiconductor manufacturing process nowadays. As semiconductor component size getting smaller and smaller, it was currently widely used in some critical processes. PEALD, which can deposit thin film at the atomic level with high uniformity, employed H2/Ar plasma source in an indirect CCP chamber is mainly used in advance process for deposition of Ni silicide. This work introduced a 2D-fluid model including 9 reactive particles and 43 gas phase reaction for H2/Ar plasma simulation. The main purpose of this study aims to reduce ion bombardment to the film while increasing the number of H atom exposed to it.
In this work, the simulation result showed the basic electric and physical properties of the plasma, such as electron density, electron temperature, potential power and particle density distribution. The time of one RF power cycle is too short to accelerate the ions or atoms to move. However, the result indicated that the density distribution of some ions and atom will vary in a RF power cycle. It turns out that because of the electron, the behaviors of particles will affect each other in a RF power cycle. It will be discussed and explained by the reaction mechanism for each reactive particle.
On the other hand, in this work, TVWs(Tailored Voltage Waveforms) are applied on power electrode, TVWs consist of two equal-voltage sine waves, which are the fundamental frequency 13.56 MHz and the second harmonic frequency 27.12 MHz. Two waveforms generated by tuning the relative phase between two frequencies are defined V_0 and V_90 comparing with original waveform (13.56 MHz).
The results indicated that 13.56 MHz and V_0 perform better than V_90 in both forming H atom and ion bombardment prevention. There is the highest H flux arrived to the substrate in 13.56 MHz, which is 2.77 times greater than V_0, showing that 13.56 MHz perform better than V_0 in production of film-forming particle. However, flux of H3+ ions ,which mainly cause ion bombardment to substrate, to the substrate of 13.56 MHz is 1.59 times higher than of V_0, indicating 13.56 MHz might cause more ion bombardment than V_0 do. This work defined H flux/H3+ flux ratio of substrate surface to clearly assess which the best waveform is. The result shows H flux/H3+ flux ratio of 13.56 MHz, V_0 and V_90 are about 30, 54 and 5, indicating that V_0 perform better in this process.
[1] H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, "Plasma-assisted atomic layer deposition: basics, opportunities, and challenges," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, p. 050801, 2011.
[2] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, et al., "A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 247-250.
[3] J. Kittl, A. Lauwers, O. Chamirian, M. Van Dal, A. Akheyar, M. De Potter, et al., "Ni-and Co-based silicides for advanced CMOS applications," Microelectronic Engineering, vol. 70, pp. 158-165, 2003.
[4] S.-H. Bang, W.-H. Kim, G. H. Gu, Y. K. Lee, T.-M. Chung, C. G. Kim, et al., "Plasma-enhanced atomic layer deposition of Ni," Japanese Journal of Applied Physics, vol. 49, p. 05FA11, 2010.
[5] T. Yen, "應用於電漿輔助原子層沉積製程之間接式電容耦合氫氣/氬氣電漿之研究," 清華大學工程與系統科學系學位論文, pp. 1-123, 2015.
[6] 羅培修, "間接式電容耦合氫氣/氬氣電漿研究-實驗探討與電漿模擬分析," 國立清華大學, 2017.
[7] K.-W. Do, C.-M. Yang, I.-S. Kang, K.-M. Kim, K.-H. Back, H.-I. Cho, et al., "Formation of low-resistivity nickel silicide with high temperature stability from atomic-layer-deposited nickel thin film," Japanese journal of applied physics, vol. 45, p. 2975, 2006.
[8] P. Diomede, M. Capitelli, and S. Longo, "Effect of discharge voltage on capacitively coupled, parallel plate rf hydrogen plasmas," Plasma Sources Science and Technology, vol. 14, p. 459, 2005.
[9] P. Diomede, B. Bruneau, S. Longo, E. Johnson, and J. Booth, "Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control," Plasma Sources Science and Technology, vol. 26, p. 075007, 2017.
[10] J. Perrin, O. Leroy, and M. Bordage, "Cross‐Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry," Contributions to Plasma Physics, vol. 36, pp. 3-49, 1996.
[11] G. Nienhuis, W. Goedheer, E. Hamers, W. Van Sark, and J. Bezemer, "A self-consistent fluid model for radio-frequency discharges in SiH 4–H 2 compared to experiments," Journal of applied physics, vol. 82, pp. 2060-2071, 1997.
[12] J. Perrin, O. Leroy, and M. C. Bordage, "Cross-Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry," Contributions to Plasma Physics, vol. 36, pp. 3-49, 1996.
[13] G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. vanSark, and J. Bezemer, "A self-consistent fluid model for radio-frequency discharges in SiH4-H-2 compared to experiments," Journal of Applied Physics, vol. 82, pp. 2060-2071, Sep 1997.
[14] A. Bogaerts and R. Gijbels, "Hybrid Monte Carlo—fluid modeling network for an argon/hydrogen direct current glow discharge," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 57, pp. 1071-1099, 2002.
[15] A. T. Hjartarson, E. G. Thorsteinsson, and J. T. Gudmundsson, "Low pressure hydrogen discharges diluted with argon explored using a global model," Plasma Sources Science and Technology, vol. 19, p. 065008, 2010.
[16] T. Kimura and H. Kasugai, "Properties of inductively coupled rf Ar/H2 plasmas: Experiment and global model," Journal of Applied Physics, vol. 107, p. 083308, 2010.
[17] A. Hjartarson, E. Thorsteinsson, and J. Gudmundsson, "Low pressure hydrogen discharges diluted with argon explored using a global model," Plasma Sources Science and Technology, vol. 19, p. 065008, 2010.
[18] L. Olivier, G. Gérard, A. Luís Lemos, P. Jérôme, and J. Jacques, "Two-dimensional modelling of - radio-frequency discharges for a-Si:H deposition," Plasma Sources Science and Technology, vol. 7, p. 348, 1998.
[19] I. Méndez, F. J. Gordillo-Vázquez, V. J. Herrero, and I. Tanarro, "Atom and Ion Chemistry in Low Pressure Hydrogen DC Plasmas," The Journal of Physical Chemistry A, vol. 110, pp. 6060-6066, 2006/05/01 2006.
[20] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin solid films, vol. 337, pp. 1-6, 1999.