研究生: |
張家豪 Chia-Hao Chang |
---|---|
論文名稱: |
結構與表面改質對奈米二氧化鈦光觸媒效率之影響 Effects of Structure and Surface Modification on Photocatalytic Efficiency of Nanostructured Titania |
指導教授: |
呂世源
Dr. Shih-Yuan Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 二氧化鈦 、光觸媒 、網狀結構 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近十年來有許多利用光觸媒去除污染物的研究,光觸媒主要有金屬氧化物半導體以及金屬硫化物,例如TiO2及ZnS。光觸媒是利用光源激發來產生電子電洞對,利用電子電洞來氧化或還原空氣中及水中的污染物而達到淨化的效果。最常使用的光觸媒為TiO2,由於其具有強氧化還原的能力,價格低廉,無毒以及化學性質穩定。
本文分為兩個部分,第一部份為二氧化鈦的製作、性質,使用拉升機在不同pH值環境下鍍膜比較其光催化性質。並使用金表面改質二氧化鈦結構,改善光催化的活性。第二部份為使用具有網狀孔洞結構的高分子為模板,製作具備有奈米網狀結構的二氧化鈦光觸媒。
使用溶膠-凝膠法製作TiO2觸媒,TiO2觸媒分散在水溶液中其等電位點在pH=5~pH=6之間;將TiO2觸媒分散在pH=3和pH=4.2溶液中,使用拉升機鍍膜,比較其光催化性質。利用懸浮在水溶液中表面帶正電的二氧化鈦粒子,與具有負電性的AuCl4-離子吸附,再加入還原劑還原,製作Au/TiO2粒子。另外也使用含浸法製作Au/TiO2觸媒粒子。將不同條件下合成的TiO2和Au/TiO2觸媒粒子,進行去除NOx的光催化反應,結果顯示,含有金的二氧化鈦觸媒比未改質的二氧化鈦觸媒具有較佳的效率。使用吸附還原製作的Au/TiO2觸媒與含浸法製作且熱處理超過300℃的觸媒其效率相近。
將具有網狀孔洞的高分子浸泡在TTIP/ACAC/ETOH溶液中數週,直到填滿整個孔洞,讓二氧化鈦在孔洞中生成,再利用加熱的方式去除高分子,而獲得具有多孔網狀的二氧化鈦光觸媒結構。將此結構進行去除NOx的氣相光催化反應與分解亞甲基藍的液相光催化反應,並且與商業化的Degussa P-25粉末進行比較,兩者具有相近的催化效率。
In the past few years, there has been increasing research interest in photocatalysis. There are two main kinds of photocatalyst, metal oxide and metal sulfide, such as TiO2 and ZnS. Photocatalyst can decompose pollutants by irradiation of light of suitable wavelength, leading to oxidation-reduction by the resulting electron-hole pairs. The most common and effective photocatalyst is TiO2 because of its strong redox ability, cheaper price, intoxicity and chemical stability.
There are two parts in this research. The first part: The synthesis and properties of TiO2. TiO2 catalyst is surface modified by gold and obtains better photocatalysis efficiency. The second part: fabrication of porous network TiO2 structure achieved by polymer template.
TiO2 catalyst was dispersed in different pH solution and coated TiO2 film by dip coater. TiO2 film was coated in different solutions and compared in photocatalytic efficiency. The negative AuCl4- ion can absorb to the surface of TiO2 particles which are positively charge in aqueous solution. Reduction agent was added to form Au/TiO2 catalyst. TiO2 and Au/TiO2 catalyst were synthesized in different conditions. The catalyst was tested by the deNOx photocatalytic reaction. The results showed that Au/TiO2 catalyst gave 10% higher efficiency than TiO2 catalyst.
The porous polymer was dipped in TTIP/ACAC/ETOH solution for several weeks, until the solution filled in the continuous pores. Polymer was burn out at 500℃ and the porous network TiO2 structure was produced. Comparison in photocatalytic efficiency of network TiO2 structure and commercial Degussa P-25 particles at deNOx gas photocatalytic reaction and decomposion of methylene blue liquid reaction. The two samples have almost the same photocatalytic efficiency.
Allen G. C., J. S. Dalton, P. A. Janes, N. G. Jones, J. A. Nicholson and K. R. Hallam, "
Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach, " Environmental Pollution, 120, 415-422(2002).
Andrew M. and L. H. Stephen,“ An overview of semiconductor photocatalysis," Journal of photochemistry and photobiology A, 108, 1(1997).
Bamwenda G. R., S. Tsubuta, T. Nakamura and M. Haruta," Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2," Journal of photochemistry and photobiology A, 89, 177-189 (1995).
Caruso R. A and G. Shchukin. ,"Inorganic macroporous films from performed nanoparticles and membrane templates,"Advanced functional materials, 13, 789-794(2003).
Caruso R. A., Jan H. Schattka, D. G. Shchukin, J. Jia and M. Antonietti,”Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating technique,” Chemistry of materials, 14, 5103-5108(2002).
Chen D. H., S. Devahasdin, C. Fan and K. Li,“ TiO2 photocatalytic oxidation of nitric oxide:transient behavior and reaction kinetics,” Journal of Photochemistry and Photobiology A: Chemistry, 156, 161–170 (2003).
Cho Y. M., W. Y Choi , C. H. Lee , T. H Hyeon and H. I. Lee, "Visiblelight- induced degradation of carbon tetrachloride on dye-sensitized TiO2," Environmental science and technology, 35, 966-970(2001).
Davis A. P. and C. P. Huang," The photocatalytic oxidation of sulfur-containingorganic compounds using cadmium sulfide and the effect on CdS photocorrosion," Water research, 25, 1273-1278(1991).
Driessen M.D. and V. H. Grassian,”Photooxidation of trichloroethylene on Pt/TiO2,” Journal of physical chemistry B, 102, 1418-1423(1998).
Fujishima. A., K. Honda.,"Electrochemical photolysis of water at a semiconductor electrode," Nature, 37, 238-241 (1972).
Gao Y. M., H. S. Shen, K. Dwight and A. Wold , "Preparation and photocatalytic properties of titanium (IV) oxide films," Materials research bulletin, 27, 1023-1030 (1992).
Hattori A., Y. Tokihisa, H. Tada and S. Ito,“ Acceleration of oxidation and retardation of reactions in photocatalysis of a TiO2/SnO2 bilayer-type catalyst,” Journal of the Electrochemical Society, 147, 2279-2283(2000).
Herrmann J. M. , H. Tahiri , Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe, A. Fernandez," Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz," Applied catalysis B, 13, 219-228(1997).
Herrmann J. M., H. Lachheb , M Ksibi , E Elaloui and C Guillard,” Photocatalytic degradation pathway of methylene blue in water,” Applied Catalysis B, 31, 145–157(2001).
Hirano K., H. Asayama, A. Hoshino and H. Wakatsuki," Metal powder addition effect on the photocatalytic reactions and the photo-generated electric charge collected at an inert electrode in aqueous TiO2 suspensions," Journal of photochemistry and photobiology A, 110, 307-311(1997).
Hoffmann M. R., S. T. Martin, W. Choi and D. W. Bahnemann," Environmental Applications of Semiconductor Photocatalysis," Chemical reviews, 95, 69-96(1995).
Kamat P. V.,” Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles," Journal of physical chemistry B, 105, 960-966(2001).
Kissa E.,"Determination of acetylaceton and alcohols in titanium chelates," Analytica Chimica Acta, 281, 385-389(1993).
Linsebigler A. L., G. Lu and John T. Yates,“ Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results,” Chemical reviews, 95, 735(1995).
Liu C. Y., C. Y. Wang, X. Zheng, J. Chen and T. Shen,"The surface chemistry of hybrid nanometer-sized particles. Photochemical deposition of gold on ultrafine TiO2 particles," Colloids and surfaces A, 131, 271-280(1998).
Mann S, M. Breulmann and S. A. Davis," Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks," Advanced materials, 12, 502-507(2000).
Matthews R.W.,"An adsorption water purifier with in situ photocatalytic regeneration," Journal of catalysis, 113, 549-555(1988).
Shchukin D. G., J. H. Schattka, M Antonietti and R. A. Caruso,”Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template,” Journal of physical chemistry B, 107, 952-957(2003).
Skoog D. A., F. J. Holler and T. A. Nieman, Principles of instrumental analysis, Chapter 13 (1998).
Tanaka S. and H. Gupta,“ Photocatalytic mineralisation of perchloroethylene using titanium dioxide,” Water science and technology, 31, 47-54(1995).
Terabe K., K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai and Y. Iguchi, "Microstructure and crystallization behavior of TiO2 precursor prepared by the sol-gel method using metal alkoxide," Journal of materials science, 29, 1617-1622(1994).
Verykios X.E., P. Panagiotis and T. Ioannides,”Performance of doped PtTiO2 catalysts for combustion of volatile organic compounds VOCs,” Applied catalysis B, 15, 75-92(1998).
Wold A, M. Albert, Y. M. Gao, D. Toft and K. dwight, "Photoassisted gold deposition of titanium dioxide," Materials research bulletin, 27, 961-966(1992).
Ying J. Y., C. C. Wang," Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals," Chemistry of materials, 11, 3113-3120(1999).
Yoldas B. E.,“ Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters,” Journal of materials science, 21, 1087-1092(1986).
Yoshinori T, H. Yoneyanma and H. Tamura," Reduction of methylene blue on illuminated titanium dioxide in methanolic and aqueous solutions," The Journal of Physical Chemistry, 76, 3460-3464(1972).
Yuhong Z., Ming W., Gouxing X and Weishen Y.," Preparation and spectroscopic characterization of quantum-size titanium dioxide," Chemistrymag, 2, 17-24 (2000).
Zeltner W. A., X. Fu, M. A. Anderson," The gas-phase photocatalytic mineralization of benzene on porous titaniabased catalysts," Applied catalysis B, 6, 209-224(1995).
吳泰伯, 許樹恩, "X光繞射原理與材料結構分析," 中國材料科學學會(1996).
汪建民, "材料分析," 中國材料科學學會(1998).
林正得, 二氧化鈦奈米微粒進行光催化金屬還原以形成核-殼結構之研究, 國立清華大學碩士論文(2001).
陳陵援,"儀器分析," 三民書局 (1982).
葉志揚,以溶膠-凝膠法製備二氧化鈦觸媒及其性質鑑定,國立台灣大學碩士論文(2000).
謝坤龍, "二氧化鈦光觸媒之發展與應用," 工業材料雜誌, 183, 127-131(2002).
謝秉勳, 奈米級光觸媒之製備及光催化活性測定, 國立台灣大學碩士論文(2002).
光觸媒空氣淨化測試系統_使用手冊, 工研院環安中心.