簡易檢索 / 詳目顯示

研究生: 潘振銘
Pan, Zhen-Ming
論文名稱: 利用系統化方法根據啟動子-核糖體結合位元件庫設計強健外部可調式生物濾波器
Robust externally tunable biological filter design based on promoter-RBS libraries: systematic approach
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 陳博現
Chen, Bor-Sen
林俊良
Lin, Chun-Liang
林澤
Lin, Che
吳謂勝
Wu, Wei-Sheng
李曉青
Lee, Hsiao-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 80
中文關鍵詞: 合成生物學基因電路生物濾波器基因演算法
外文關鍵詞: synthetic biology, genetic circuit, biological filter, genetic algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合成生物學利用數學模型來描述生物系統的基因表現,並且將設計的合成基因電路實現在活體細胞中以達到各式各樣的應用。在此研究中,根據良好特性的啟動子-核糖體結合位元件庫及串接基因電路拓樸,匹配期望的輸入/輸出響應的外部可控強健生物濾波器被設計出來。在合成生物領域中,生物濾波系統作為一個功能強大的檢測器或感測器,可以感測不同分子訊號,並且只有在輸入分子訊號的濃度高於或低於指定的門檻才會產生特定的輸出響應。在這裡,強健生物濾波器的設計方法被概括為三個步驟。第一,經由非線性參數估計方法識別三種啟動子-核糖體結合位元件的定性與定量特性,建立了良好特性的啟動子-核糖體結合位元件庫。第二,功能作為生物濾波器的合成基因電路被分解成三個串接的基因調控模組,每個模組包含一個從對應元件庫中選擇的啟動子-核糖體結合位元件。最後,根據系統化方法,藉由搜尋啟動子-核糖體結合位元件庫與控制誘導物濃度,強健外部可調生物濾波器被設計與指定輸入/輸出濾波響應達到最佳匹配。在此研究中描述的生物濾波器可以單獨設計以檢測不同金屬離子的殘留量。此外在合成生物學中,藉由模組化的概念,個別的生物濾波器可被整合成更高階的系統以產生廣泛的生物應用。


    Synthetic biology employs the mathematical models to capture the gene expression of engineered biological systems and implements the designed synthetic gene circuits in living cells for a variety of applications. In this study, robust biological filters with an external control to match a desired input/output (I/O) response are engineered based on the well-characterized promoter-RBS libraries and a cascade gene circuit topology. In the synthetic biological field, the biological filter system serves as a powerful detector or sensor that can sense different molecular signals and produces a specific output response only if the concentration of the input molecular signal is higher or lower than a specified threshold. Here the design approach of robust biological filters is summarized to three steps. Firstly, several well-characterized promoter-RBS libraries are established by identifying and collecting the quantitative and qualitative characteristics of three kinds of promoter-RBS components via nonlinear parameter estimation method. Secondly, the synthetic gene circuit functioned as the biological filter is decomposed into three cascade gene regulatory modules, and an adequate promoter-RBS component is selected for each module from the corresponding promoter-RBS library. Finally, based on the proposed systematic method, a robust externally tunable biological filter is engineered by searching the promoter-RBS component libraries and a control inducer concentration library to achieve the optimal matching with the specified I/O filtering response. The biological filters design in this study might be applicable to detect the residual of different metallic ions. In addition, the designed biological filters can be integrated into higher-order systems with the concept of modularity for a wide range of biological applications in synthetic biology.

    摘 要......................................................i Abstract................................................iii 誌 謝.....................................................iv Content...................................................v List of Figures..........................................vi List of Tables..........................................vii List of Supplementary Materials........................viii Introduction..............................................1 Establishment of well-characterized Promoter-RBS libraries ..........................................................6 2.1. Characteristics of three kinds of promoter-RBS components................................................6 2.2. Dynamic model of protein expression with three kinds of promoter-RBS components in synthetic gene circuit.........7 Design methodology of synthetic biological filter based on promoter-RBS libraries...................................13 3.1. A cascade gene circuit topology for biological filter design...................................................13 3.2. Dynamic model of biological filter based on gene circuit topology.........................................16 3.3. Formulation of design specifications for biological filters..................................................23 3.4. Biological filter design via mixed library-based searching method.........................................24 Biological filter design in silico and in vivo based on promoter-RBS libraries and gene circuit topology.........29 4.1. Synthetic biological filter design..................29 4.2. External tuning of the biological filter............34 Discussion...............................................37 Conclusion...............................................47 Supplementary Material...................................49 1. Construction procedure of three kinds of promoter-RBS libraries................................................49 Bibliography.............................................55

    [1] S. A. Benner and A. M. Sismour, "Synthetic biology," Nature Reviews Genetics, vol. 6, pp. 533-543, 2005.
    [2] E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss, "Synthetic biology: new engineering rules for an emerging discipline," Mol Syst Biol, vol. 2, 2006.
    [3] S. T. Withers and J. D. Keasling, "Biosynthesis and engineering of isoprenoid small molecules," Applied microbiology and biotechnology, vol. 73, pp. 980-990, 2007.
    [4] S. K. Lee, H. Chou, T. S. Ham, T. S. Lee, and J. D. Keasling, "Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels," Curr Opin Biotechnol, vol. 19, pp. 556-563, 2008.
    [5] T. K. Lu and J. J. Collins, "Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy," Proceedings of the National Academy of Sciences, vol. 106, p. 4629, 2009.
    [6] M. B. Elowitz and S. Leibler, "A synthetic oscillatory network of transcriptional regulators," Nature, vol. 403, pp. 335-338, 2000.
    [7] T. S. Gardner, C. R. Cantor, and J. J. Collins, "Construction of a genetic toggle switch inEscherichia coli," Nature, vol. 403, pp. 339-342, 2000.
    [8] L. L. Looger, M. A. Dwyer, J. J. Smith, and H. W. Hellinga, "Computational design of receptor and sensor proteins with novel functions," Nature, vol. 423, pp. 185-190, 2003.
    [9] J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring, and J. Hasty, "A fast, robust and tunable synthetic gene oscillator," Nature, vol. 456, pp. 516-519, 2008.
    [10] S. Basu, Y. Gerchman, C. H. Collins, F. H. Arnold, and R. Weiss, "A synthetic multicellular system for programmed pattern formation," Nature, vol. 434, pp. 1130-1134, 2005.
    [11] R. Entus, B. Aufderheide, and H. M. Sauro, "Design and implementation of three incoherent feed-forward motif based biological concentration sensors," Systems and synthetic biology, vol. 1, pp. 119-128, 2007.
    [12] T. Sohka, R. A. Heins, R. M. Phelan, J. M. Greisler, C. A. Townsend, and M. Ostermeier, "An externally tunable bacterial band-pass filter," Proceedings of the National Academy of Sciences, vol. 106, p. 10135, 2009.
    [13] T. Sohka, R. A. Heins, and M. Ostermeier, "Morphogen-defined patterning of Escherichia coli enabled by an externally tunable band-pass filter," J Biol Eng, vol. 3, p. 10, 2009.
    [14] L. M. Tuttle, H. Salis, J. Tomshine, and Y. N. Kaznessis, "Model-driven designs of an oscillating gene network," Biophys J, vol. 89, pp. 3873-3883, 2005.
    [15] J. E. Ayers, Digital integrated circuits: analysis and design: CRC press, 2003.
    [16] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science, vol. 294, p. 1313, 2001.
    [17] B. Wang, R. I. Kitney, N. Joly, and M. Buck, "Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology," Nat Commun, vol. 2, p. 508, 2011.
    [18] A. Tamsir, J. J. Tabor, and C. A. Voigt, "Robust multicellular computing using genetically encoded NOR gates and chemical/wires/'," Nature, vol. 469, pp. 212-215, 2010.
    [19] S. Regot, J. Macia, N. Conde, K. Furukawa, J. Kjellén, T. Peeters, S. Hohmann, E. De Nadal, F. Posas, and R. Solé, "Distributed biological computation with multicellular engineered networks," Nature, vol. 469, pp. 207-211, 2010.
    [20] D. Endy, "Foundations for engineering biology," Nature, vol. 438, pp. 449-453, 2005.
    [21] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices vol. 40: Cambridge University Press Cambridge, 1998.
    [22] T. K. Lu, A. S. Khalil, and J. J. Collins, "Next-generation synthetic gene networks," Nat Biotechnol, vol. 27, pp. 1139-1150, 2009.
    [23] P. E. M. Purnick and R. Weiss, "The second wave of synthetic biology: from modules to systems," Nature Reviews Molecular Cell Biology, vol. 10, pp. 410-422, 2009.
    [24] J. R. Kelly, A. J. Rubin, J. H. Davis, C. M. Ajo-Franklin, J. Cumbers, M. J. Czar, K. De Mora, A. L. Glieberman, D. D. Monie, and D. Endy, "Measuring the activity of BioBrick promoters using an in vivo reference standard," J Biol Eng, vol. 3, p. 4, 2009.
    [25] T. Ellis, X. Wang, and J. J. Collins, "Diversity-based, model-guided construction of synthetic gene networks with predicted functions," Nat Biotechnol, vol. 27, pp. 465-471, 2009.
    [26] C. H. Wu, H. C. Lee, and B. S. Chen, "Robust synthetic gene network design via library-based search method," Bioinformatics, vol. 27, pp. 2700-2706, 2011.
    [27] L. Huynh, J. Kececioglu, M. Köppe, and I. Tagkopoulos, "Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming," PloS one, vol. 7, p. e35529, 2012.
    [28] G. Rodrigo, J. Carrera, and A. Jaramillo, "Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors," Nucleic Acids Research, vol. 39, pp. e138-e138, 2011.
    [29] M. Chilali and P. Gahinet, "H∞ design with pole placement constraints: an LMI approach," IEEE Trans. Automatic Control, vol. 41, pp. 358-367, 1996.
    [30] B. S. Chen, C. S. Tseng, and H. J. Uang, "Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach," Fuzzy Systems, IEEE Transactions on, vol. 8, pp. 249-265, 2000.
    [31] C. H. Wu, W. Zhang, and B. S. Chen, "Multiobjective H2/H [infinity] synthetic gene network design based on promoter libraries," Mathematical Biosciences, 2011.
    [32] L. Chua, "Memristor-the missing circuit element," IEEE Trans. Circuit Theory, vol. 18, pp. 507-519, 1971.
    [33] A. R. Hambley, Electrical engineering: principles and applications: Pearson, 2009.
    [34] M. M. Kämpf, R. Engesser, M. Busacker, M. Hörner, M. Karlsson, M. D. Zurbriggen, M. Fussenegger, J. Timmer, and W. Weber, "Rewiring and Dosing of Systems Modules as Design Approach for Synthetic Mammalian Signaling Networks," Molecular BioSystems, 2012.
    [35] T. Bulter, S. G. Lee, W. W. C. Wong, E. Fung, M. R. Connor, and J. C. Liao, "Design of artificial cell–cell communication using gene and metabolic networks," Proc Natl Acad Sci U S A, vol. 101, p. 2299, 2004.
    [36] W. R. Farmer and J. C. Liao, "Improving lycopene production in Escherichia coli by engineering metabolic control," Nat Biotechnol, vol. 18, pp. 533-537, 2000.
    [37] J. H. J. Leveau and S. E. Lindow, "Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria," J Bacteriol, vol. 183, pp. 6752-6762, 2001.
    [38] U. Alon, An introduction to systems biology: design principles of biological circuits vol. 10: CRC press, 2007.
    [39] L. Zhang, H. N. Patel, J. W. Lappe, and R. M. Wachter, "Reaction progress of chromophore biogenesis in green fluorescent protein," Journal of the American Chemical Society, vol. 128, pp. 4766-4772, 2006.
    [40] R. Y. Tsien, "The green fluorescent protein," Annual review of biochemistry, vol. 67, pp. 509-544, 1998.
    [41] C. R. Albano, L. Randers-Eichhon, Q. Chang, W. E. Bentley, and G. Rao, "Quantitative measurement of green fluorescent protein expression," Biotechnology techniques, vol. 10, pp. 953-958, 1996.
    [42] R. Heim, A. B. Cubitt, and R. Y. Tsien, "Improved green fluorescence," 1995.
    [43] J. J. Grefenstette, "Optimization of control parameters for genetic algorithms," IEEE Trans. Systems, Man and Cybernetics, vol. 16, pp. 122-128, 1986.
    [44] D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning: Addison-wesley, 1989.
    [45] B. S. Chen, Y. M. Cheng, and C. H. Lee, "A genetic approach to mixed H2/H∞ optimal PID control," IEEE Control Systems Magazine, vol. 15, pp. 51-60, 1995.
    [46] A. Kinkhabwala and C. C. Guet, "Uncovering cis regulatory codes using synthetic promoter shuffling," PloS one, vol. 3, p. e2030, 2008.
    [47] H. M. Salis, E. A. Mirsky, and C. A. Voigt, "Automated design of synthetic ribosome binding sites to control protein expression," Nat Biotechnol, vol. 27, pp. 946-950, 2009.
    [48] B. Canton, A. Labno, and D. Endy, "Refinement and standardization of synthetic biological parts and devices," Nat Biotechnol, vol. 26, pp. 787-793, 2008.
    [49] A. Arkin, "Setting the standard in synthetic biology," Nat Biotechnol, vol. 26, pp. 771-773, 2008.
    [50] J. M. Callura, C. R. Cantor, and J. J. Collins, "Genetic switchboard for synthetic biology applications," Proceedings of the National Academy of Sciences, vol. 109, pp. 5850-5855, 2012.
    [51] J. D. Keasling, "Synthetic biology and the development of tools for metabolic engineering," Metab Eng, 2012.
    [52] P. M. Boyle and P. A. Silver, "Parts plus pipes: Synthetic biology approaches to metabolic engineering," Metab Eng, 2011.
    [53] S. A. Lynch and R. T. Gill, "Synthetic Biology: New strategies for directing design," Metab Eng, 2011.
    [54] Z. Xie, L. Wroblewska, L. Prochazka, R. Weiss, and Y. Benenson, "Multi-input RNAi-based logic circuit for identification of specific cancer cells," Science's STKE, vol. 333, p. 1307, 2011.
    [55] R. Johansson, "System modeling & identification," 1993.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE