研究生: |
林淑華 Sue-Hwa Lin |
---|---|
論文名稱: |
應用在數位影像的高速類比數位轉換器之設計 Design of high-speed analog to digital converters for digital video applications |
指導教授: |
柳克強教授
Prof. Keh-Chyang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 管線化 、類比數位轉換器 、運算放大器 、訊號加強控制 、兩級放大 、取樣保值 |
外文關鍵詞: | Pipeline, ADC, OPA, Gain Boost, Two stage, sample and hold |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是設計一個可用於專業影音訊號處理的高速管線化(Pipeline)類比數位轉換器。本類比數位轉換器的目標訂在輸入範圍1 Vp-p,解析度為十位元,最小單位電壓為1 mV,取樣速率為100 MHz。為了實現高速,低功率消耗的轉換效能,採用了管線化架構。在管線化的類比數位轉換器中,由於取樣保值電路為整個管線化類比數位轉換器第一級的電路,它的效能會決定整個管線化類比數位轉換器的表現,所以如何實現一個高速、高準度的取樣保值電路為最主要的設計瓶頸。為了實現這樣一個取樣保值電路,必須設計一個高速、高增益的差動運算放大器。
為了實現一個高速、高增益的差動運算放大器,本設計中使用了訊號加強控制(Gain Boost)與兩級放大(Two stage)的技巧。一般增加增益的方法如串疊電路(Cascode),因為要增加輸出阻抗才能增加增益,所以會導致單一增益頻寬下降,但是訊號加強控制電路(Gain Boost)使用一個頻寬大於運算放大器本身頻寬的放大器來增加增益,這樣一來,運算放大器本身的單一增益頻寬便不會下降。一般高速、高增益的差動運算放大器如三級串疊電差動運算放大器(Triple cascode Opamp),在低操作電壓3.3 V的環境下,會有窄輸入共模電位(Input common mode range)、窄輸出擺幅(Output swing)的問題,而兩級放大電路可以藉由分開輸入端與輸出端的電路,使輸入和輸出都以3.3 V的操作電壓進行處理,這樣一來輸入和輸出就有足夠的頭頂空間(Head room),兩級放大差動運算放大器因而兼有寬輸入共模電位和寬輸出擺幅,將這個優點應用在管線化類比數位轉換器中,每一級的差動運算放大器皆可將全階(Full scale)輸入的差動訊號線性放大兩倍,這樣可以降低下一級處理訊號所需的精確度,這樣一來,越後級的解碼電路便可以使用較低功率消耗的電路來實現,整個電路的功率消耗可以由此降低。
本論文的管線化類比數位轉換器是使用台積電0.25 μm 1P5M mixed-mode的製程來進行模擬設計,使用元件為製程穩定性較高的I/O元件,操作電壓為3.3 V。直流分析模擬是使用Spice來進行模擬,模擬後的數據再利用Matlab進行資料的處理,得到如下的結果:沒有missing code,INL最大值為0.35 LSB,最小值為-0.46 LSB,平均值為-0.08 LSB,而DNL最大值為0.2 LSB,最小值為-0.2 LSB,平均值只有-0.8.3e-17 LSB。至於交流分析同樣使用Spice進行模擬,模擬的數據同樣是利用Matlab來進行資料的處理,所得的交流結果如下:SNDR約為60.6 dB@5 MHz,50.2 dB@40 MHz。本設計的功率消耗為722 mW,使用晶片面積預估約為2000´1000 μm2。因為本設計尚未進行功率最小化的處理,若經過最小化處理後,預估消耗功率約可降低25%左右。
The paper presents a pipeline analog to digital converter (ADC) used for video applications. The 10-bit ADC has an input signal range of ±0.5 V with the resolution near 1 mV. Sampling rate is 100 MHz. To reach the high speed, low power conversion, ADC implemented with pipeline architecture.
How to implement a high speed, high gain Opamp is the bottleneck of ADC design. The Opamp used gain boost and two-stage techniques. Gain boost circuit strengthen the DC gain of Opamp without reducing bandwidth. Two-stage can get wide input common mode range and wide output swing. Pipeline ADC can use this advantage to amplify the full-scale signal stage-by-stage and lower down the precision need stage-by-stage. This will help to save power consumption of pipeline ADC. With the aid of spice and matlab, the simulation DC performance of ADC claims no missing code, DNL within ±0.2 LSB, INL within ±0.5 LSB. The simulation AC performance of ADC claims SNDR are 60.6 dB@5 MHz and 50.2 dB@40 MHz.
The total power dissipation of ADC is about 722 mW. The power reduction can be done using error tolerance of pipeline structure. It is predicted to reduce about 25% of power dissipation.
1. 經濟部技術處IT IS計畫范哲豪, 微元件在消費性電子的應用195期第二版
2. 國家晶片系統設計中心謝晉昇研究員,CMOS類比積體電路設計講義2003版
3. http://www.analog.com/, ADI home page
4. Andrew Masami Abo, Design for Reliability of low-voltage, Switch-capacitor Circuits. PhD Thesis, University of California, Berkeley, May 1999
5. R. Jacob Baker “ CMOS Mixed-Mode Circuit Design “, published by A John Wiley & sons, INC., 2002,pp.1-5
6. David A. Johns and Ken Martin “ Analog Integrated Circuit Design “
7. Thomas Byunghak Cho and Paul R. Gray, ”A 10 Bits, 20Msamples/s, 35 mW Pipeline A/D converter,” IEEE J. Solid-State Circuits, vol. 30, pp.166-172, Mar 1995
8. Y-M. Lin, Performance Limitations on High-Resolution Video-rate Analog-to-Digital Interfaces. PhD Thesis, University of California, Berkeley, UCB/ERL M90/55, April 1991.
9. B. Razavi “Design of Analog CMOS Integrated Circuits”, published by McGraw-Hill, pp.414-417, 2001
10. H. J. M. Veendrick, “The Behavior of Flip-Flops Used as Synchronizers and Prediction of Their Failure Rate,” IEEE J. Solid-State Circuits, vol. SC-15,no. 2,April 1980
11. B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995
12. Rinaldo Castello and P. R. Gray, FELLOW, IEEE,”A High-Performance Micropower Switch-Capacitor Filter,” IEEE Journal of Solid-State, Vol. Sc-20, no. 6, December 1985
13. B. Razavi “Design of Analog CMOS Integrated Circuits”, published by McGraw-Hill, pp.361-369, 2001
14. B. Razavi “Design of Analog CMOS Integrated Circuits”, published by McGraw-Hill, pp.302-306, 2001
15. B. Razavi “Design of Analog CMOS Integrated Circuits”, published by McGraw-Hill, pp.345-355, 2001
16. K. Bult and G. J. G. M. Geelen, “ A fast-settling CMOS opamp with 90-dB gain and 116 MHz unity-gain frequency,” in ISSCC Dig. Tech. Pap., Feb. 1990, pp. 108-109.
17. T. Cho, Low-power Low-voltage Analog-to-digital Conversion Techniques Using Pipelined Architectures, PhD Thesis, University of California, Berkeley, 1995.Available as UCB/ERL M95/23
18. P. C-W. Yu, “Low-power Design Techniques for Pipelined Analog-to-Digital Converters,”Ph.D. Thesis, Massachusetts Institue of Technology, 1996.