簡易檢索 / 詳目顯示

研究生: 張展銘
Chang, Chan Ming
論文名稱: 利用寬頻兆赫波光譜儀研究氧化銦錫奈米結構的光電特性
The studies of indium-tin-oxide nanostructures by broadband terahertz spectroscopy
指導教授: 潘犀靈
Pan,Ci-Ling
口試委員: 趙如蘋
Pan, Ru-Pin
余沛慈
Yu, Peichen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 99
中文關鍵詞: 兆赫波時域光譜氧化銦錫薄膜氧化銦錫奈米晶鬚氧化銦錫奈米柱雷射光激發電漿
外文關鍵詞: THz-TDS, ITO thin film, ITO nanowhisker, ITO nanorod, laser-induced gas plasma
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化銦錫由於具有高的光學穿透率與導電率這兩種優異的性質,已經被廣泛使用於各種光電元件,像是太陽能電池、液晶顯示器、和發光二極體。最近,氧化銦錫的奈米結構被證明具有良好的抗反射特性;這種新材料也成功的被使用在提高光伏電池與發光二極體的效率。在本論文中,我們利用光導天線與雷射光激發電漿的兆赫波時域光譜儀,研究不同厚度之氧化銦錫薄膜、奈米柱、奈米晶鬚的兆赫波段光學常數與導電率。
    氧化銦錫薄膜是用直流活性磁控濺鍍法成長在高阻值矽晶圓基板上,而奈米柱、奈米晶鬚則是利用掠射角電子束蒸鍍法沉積於高阻值矽晶圓基板。
    為了得到在兆赫波段下更寬頻的光學與電學資訊,我們整合了光導天線與雷射光激發電漿兆赫波時域光譜儀所測量的光學常數,而寬頻的導電率可以由計算折射率得到。因此,藉由寬頻的氧化銦錫薄膜、奈米柱、奈米晶鬚導電率擬合Drude-Smith模型可以得到更準確的光電材料電性參數,像是直流的遷移率與載子濃度。我們推算氧化銦錫薄膜的電漿頻率在1547-3170 rad•THz的範圍,散射時間為4.32-9.19 fs。而奈米柱與奈米晶鬚的電漿頻率分別為751-853與561-1006 rad⋅THz,散射時間為13.2-39.6和13.5-31.7 fs。氧化銦錫薄膜的電子遷移率、載子濃度分別為2.14-16.2 cm2 V−1 s−1和2.26-9.49 × 1020 cm−3,奈米晶鬚為20.26-92 cm2 V−1 s−1和5.33-6.86 × 1019 cm−3,而奈米柱為9.13-53.6 cm2 V−1 s−1 與2.97-9.56 × 1019 cm−3。
    我們的結果指出奈米柱、奈米晶鬚展現比薄膜更長的載子散射時間,表示這兩種奈米結構具有優異的結晶與較大的晶粒尺寸。除此之外,我們也討論在不同奈米結構下反向散射與局限效應,造成了奈米晶鬚的導電率優於奈米柱。


    Indium tin oxide (ITO) exhibits two outstanding properties which are the high optical transparency and electrical conductivity. It has been widely used for various optoelectronic devices, such as solar cells, liquid crystal displays, and light emitting diodes (LED). Recently, because of the broadband and omnidirectional antireflection (AR) characteristics, ITO nanostructures have been successfully employed to enhance efficiency of photovoltaics and LED. In this thesis, we aimed to study the frequency-dependent complex refractive indices and conductivities of ITO thin films, nanorods, and nanowhiskers by THz time-domain spectroscopy (THz-TDS) based on photoconductive (PC) antennas and laser-induced gas plasma, respectively.
    ITO thin films were grown on the high resistivity silicon substrate by DC reactive magnetron sputtering. On the other hand, ITO nanorods and nanowhiskers were deposited on the high resistivity silicon substrate using glancing-angle electron-beam evaporation.
    In order to obtain the complete optical and electrical information, we combined the experimental results of complex refractive indices measured from the PC antenna (0.15-1.4THz) and laser-induced gas plasma (0.5-4THz) THz-TDS system. Because the complex conductivities can be extracted from the refractive indices, the important electrical parameters for optoelectronic materials, such as DC mobilities and carrier densities fit complex conductivities of the ITO thin films, nanorods, and nanowhiskers by Drude-Smith model, will be much more accurate. We have determined that the plasma frequencies of the ITO films are in the range of 1547-3170 rad•THz, while the corresponding scattering times are 4.32-9.19 fs. For nanowhiskers and nanorods, the plasma frequencies are 751-853 versus 561-1006 rad⋅THz, and carrier scattering time are 13.2-39.6 versus 13.5-31.7 fs, respectively. The mobility, electron density of the thin films were determined to be 2.14-16.2 cm2 V−1 s−1 and 2.26-9.49 × 1020 cm−3, while 20.26-92 cm2 V−1 s−1 and 5.33-6.86 × 1019 cm−3 in nanowhiskers, 9.13-53.6 cm2 V−1 s−1 and 2.97-9.56 × 1019 cm−3 in nanorods.
    Our results showed that the ITO nanowhiskers and nanorods exhibit longer carrier scattering times than ITO thin films. This denotes that the two kinds of nanostructures have an excellent crystallinity with large grain size. In addition, we also discussed the backscattering and localization effect in the different nanostructures, while it caused the nanowhiskers to show the more remarkable conductivity than nanorods.

    摘要 I Abstract II 致謝 III Table of Contents IV List of Figures VI List of Tables XV Chapter 1 Introduction 1 1.1 Terahertz technology 1 1.2 Nanostructured materials 2 1.3 ITO nanostructures 3 1.4 Motivation and objectives for terahertz measurement 4 1.5 Organization of this thesis 5 Chapter 2 Experimental Setup 6 2.1 Sample preparation 6 2.1.1 ITO thin films 6 2.1.2 ITO nanorods and nanowhiskers 6 2.2 Laser system (Tsunami, Spitfire) 9 2.3 Terahertz time-domain spectroscopy based on laser-induced gas plasma setup 11 2.4 Terahertz time-domain spectroscopy based on photoconductive antenna setup 14 Chapter 3 Theoretical Model and Analytical Methods 17 3.1 Terahertz time-domain spectroscopy (THz-TDS) based on laser-induced gas plasma 17 3.1.1 Introduction 17 3.1.2 THz generation based on laser-induced gas plasma 18 3.1.3 Four wave mixing model 20 3.1.4 Transient photocurrent model 23 3.1.5 THz detection based on electro-optic sampling 26 3.2 Terahertz time-domain spectroscopy (THz-TDS) based on photoconductive antenna 29 3.2.1 THz generation based on photoconductive antenna 29 3.2.2 THz detection based on photoconductive antenna 31 3.3 Extraction of optical parameters of materials from THz-TDS 32 3.4 Optical conductivity 39 3.5 Effective medium theorem 45 Chapter 4 Experimental Results and Discussion 47 4.1 Characterization of THz-TDS based on laser-induced gas plasma 47 4.2 Optical properties of ITO thin films, nanorods and nanowhiskers 52 4.2.1 Experimental results of Antenna system 52 4.2.2 Experimental results of laser-induced gas plasma system 63 4.2.3 Integration of antenna and laser-induced gas plasma system 74 4.3 Electrical properties of ITO thin films and nanowhiskers 80 4.3.1 Electrical properties of ITO thin films 80 4.3.2 Electrical properties of ITO nanorods and nanowhiskers 85 4.3.3 Summaries and discussions 90 Chapter 5 Conclusions and Future Works 92 5.1 Conclusions 92 5.2 Future works 93 Reference 93

    [1] Jared H. Strait, Paul A. George, Mark Levendorf, Martin Blood-Forsythe, Farhan Rana, and Jiwoong Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy,” Nano Lett., Vol. 9, No. 8, pp. 2967-2972, June 2009.
    [2] Katsuhiro Ajito and Yuko Ueno, “THz Chemical Imaging for Biological Applications,” IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, pp. 293-300, September 2011
    [3] B. B. Hu and M. C. Nuss, W E. Sleat, and W Sibbett, “Imaging with terahertz waves,” Opt. Lett., Vol. 20, No. 16, pp. 1716-1718, August 1995.
    [4] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., Vol. 45, No. 3, pp. 284-286, May 1984.
    [5] A. Rice, Y. Jin, X. F. Ma, X.C. Zhang, D. Bliss et al., “Terahertz optical rectification from 110 zincblende crystals,” Appl. Phys. Lett., Vol. 64, No. 11, pp. 1324-1326, March 1994.
    [6] X.C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett., Vol. 56, No. 11, pp. 1011-1013, March 1990.
    [7] Rüdeger Köhler et al, “Terahertz semiconductor heterostructure laser,” NATURE, Vol. 417, No. 6885, pp. 156-159, May 2002.
    [8] Q. Wu and X.C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett., Vol. 67, No. 24, pp. 3523-3525, December 1995.
    [9] D. E. Spence, J. M. Evans, W E. Sleat, and W Sibbett, “Regeneratively initiated self-mode-locked Ti:sapphire laser,” Opt. Lett., Vol. 16, No. 22, pp. 1762-1764, November 1991.
    [10] Patrick Parkinson, James Lloyd-Hughes, Qiang Gao, H. Hoe Tan, Chennupati Jagadish, Michael B. Johnston, and Laura M. Herz, “Transient Terahertz Conductivity of GaAs Nanowires,” Nano Lett., Vol. 7, No. 7, pp. 2162-2165, June 2007.
    [11] Ting-Jen Hsueh, Hsin-Yuan Chen, Tsung-Ying Tsai, Wen-Yin Weng, Yu-Ming Yeh, Bau-Tong Dai, and Jia-Min Shieh, “Si Nanowire-Based Photovoltaic Devices Prepared at Various Temperatures,” IEEE Electron Device Lett., Vol. 31, No. 11, pp. 1275-1277, November 2010.
    [12] Jung Woo Leem and Jae Su Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Optics Express, Vol. 19, No. S3, pp. A258-A268, May 2011.
    [13] Seong Hwan Lee and Na Young Ha, “Nanostructured indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes,” Optics Express, Vol. 19, No. 22, pp. 21803-21808, October 2011.
    [14] Yi-Jung Liu, Chien-Chang Huang, Tai-You Chen, Chi-Shiang Hsu, Jian-Kai Liou, Tsung-Yuan Tsai, and Wen-Chau Liu, “Implementation of an indium-tin-oxide (ITO) direct-Ohmic contact structure on a GaN-based light emitting diode,” Optics Express, Vol. 19, No. 15, pp. 14662-14670, July 2011.
    [15] T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos et al., “Indium–tin–oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys., Vol. 92, No. 4, pp. 2210-2212, August 2002.
    [16] D. G. Cooke and P. Uhd Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Optics Express, Vol. 16, No. 19, pp. 15123-15129, September 2008.
    [17] Josef Kröll, Juraj Darmo, and Karl Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Optics Express, Vol. 15, No. 11, pp. 6552-6560, May 2007.
    [18] A. Mayer and F. Keilmann, “Far-infrared nonlinear optics: I. χ(2) near ionic resonance,” Phys. Rev. B, Vol. 33, No. 10, pp. 6954-6961, MAY 1986.
    [19] T. Dekorsy, V. A. Yakovlev, W. Seidel, M. Helm, and F. Keilmann, “Infrared-Phonon–Polariton Resonance of the Nonlinear Susceptibility in GaAs,” Phys. Rev. Lett., Vol. 90, No. 5, pp. 6954-6961, February 2003.
    [20] J.R. Morris, Y.R. Shen, “Far-infrared generation by picosecond pulses in electro-optical materials,” Optics Communications, Vol. 3, Issue 2, pp. 81-84, April 1971.
    [21] D. H. Auston and P. R. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett., Vol. 43, No. 7, pp. 631-633, October 1983.
    [22] Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett., Vol. 54, No.6, February 1989.
    [23] D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett., Vol. 53, No. 16, pp. 1555-1558, October 1984.
    [24] T. Löffler, M. Kress, M. Thomson, T. Hahn, N. Hasegawa, and H. G. Roskos, “Comparative performance of terahertz emitters in amplifier-laser-based systems,” Semicond. Sci. Technol., Vol. 20, pp. S134-S141, June 2005.
    [25] H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, “Subpicosecond, Electromagnetic Pulses from Intense Laser-Plasma Interaction,” Phys. Rev. Lett., Vol. 71, No. 17, pp. 2725- 2728, October 1993.
    [26] H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Phys. Rev. E, Vol. 49, No. 17, pp. 671-677, January 1994.
    [27] Mark D. Thomson, Markus Kreß, Torsten Löffler, and Hartmut G. Rosk, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser & Photon. Rev., Vol. 1, No. 4, pp. 349-368, November 2007.
    [28] T. Löffler, F. Jacob, and H. G. Roskos, “Generation of terahertz pulses by photoionization of electrically biased air,” Appl. Phys. Lett., Vol. 77, No. 3, pp. 453-455, July 2000.
    [29] T. Löffler and H. G. Roskos, “Gas-pressure dependence of terahertz-pulse generation in a laser generated nitrogen plasma,” J. Appl. Phys., Vol. 91, No. 5, pp. 2611-2614, March 2002.
    [30] D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett., Vol. 25, No. 16, pp. 1210-1212, August 2000.
    [31] K. Y. Kim, J. H. Glownia, A. J. Taylor and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express, Vol. 15, No. 8, pp. 4577- 4584, April 2007.
    [32] K. Y. KIM, A. J. TAYLOR, J. H. GLOWNIA AND G. RODRIGUEZ, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” nature photonics, Vol. 2, pp. 605-609, October 2008.
    [33] Ki-Yong Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas, Vol. 16, pp. 056706, May 2009.
    [34] I. Babushkin, W. Kuehn, C. Ko¨hler, S. Skupin, L. Bergé, K. Reimann, M.Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases,” Phys. Rev. Lett., Vol. 105, pp. 053903, July 2010.
    [35] Yasuo Minami, Makoto Nakajima, and Tohru Suemoto, “Effect of preformed plasma on terahertz-wave emission from the plasma generated by two-color laser pulses,” Phys. Rev. A, Vol. 83, pp. 023828, 1990.
    [36] Markus Kress, Torsten Löffler, Susanne Eden, Mark Thomson, and Hartmut G. Roskosr, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett., Vol. 29, No. 10, pp. 1120-1122, November, 2003.
    [37] T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett., Vol. 30, No. 20, pp. 2805-2807, October 2005.
    [38] Xu Xie, Jianming Dai, and X.-C. Zhang, “Coherent Control of THz Wave Generation in Ambient Air,” Phys. Rev. Lett., Vol. 96, pp. 075005, February 2006.
    [39] Klaus Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys., Vol. 70, pp. 1597-1632, September 2007.
    [40] Jianming Dai, Nicholas Karpowicz, and X.-C. Zhang, “Coherent Polarization Control of TerahertzWaves Generated from Two-Color Laser-Induced Gas Plasma,” Phys. Rev. Lett., Vol. 103, pp. 023001, July 2009.
    [41] Yun-Shik Lee, “Principles of terahertz science and technology,” Chapter3, springer, 2009.
    [42] Ching-Wei Chen, Yen-Cheng Lin, Chia-Hua Chang, Peichen Yu, Jia-Min Shieh, and Ci-Ling Pan, “Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium Tin Oxide Thin Films from the Visible to the Far-Infrared,” IEEE Journal of Quantum Electronics, Vol. 46, No. 12, pp. 1746-1754, December 2010.
    [43] M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B, Vol. 41, No. 17, pp. 12140-12149, 1990.
    [44] S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett., Vol. 79, No. 24, pp. 3923-3925, December 2001.
    [45] Martin Dressel and Marc Scheffler, “Verifying the Drude response,” Ann. Phys. (Leipzig), Vol. 15, No. 7-8, pp. 535-544, May 2006.
    [46] N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B, Vol. 64, pp. 155106, 2001.
    [47] Ronald Ulbricht, Euan Hendry, Jie Shan, Tony F. Hein, Mischa Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Reviews of Modern Physics, Vol. 83, pp. 543-586, June 2011.
    [48] H.-Ch. Weissker, J. Furthmu¨ller, and F. Bechstedt, “Validity of effective-medium theory for optical properties of embedded nanocrystallites from ab initio supercell calculations,” Phys. Rev. B, Vol. 67, pp. 165322, 2003.
    [49] D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B, Vol. 73, pp. 193311, May 2006.
    [50] Matthew C. Beard, Gordon M. Turner, James E. Murphy, Olga I. Micic, Mark C. Hanna, Arthur J. Nozik, and Charles A. Schmuttenmaer, “Electronic Coupling in InP Nanoparticle Arrays,” Nano Lett., Vol. 3, No. 12, pp. 1695-1699, October 2003.
    [51] Jiaguang Han, Weili Zhang, Wei Chen, Sanith Ray, Jun Zhang, Mingxia He, Abul K. Azad, and Zhiyuan Zhu, “Terahertz Dielectric Properties and Low-Frequency Phonon Resonances of ZnO Nanostructures,” J. Phys. Chem. C, Vol. 111, pp. 13000-13006, June 2007.
    [52] Jason B. Baxter and Charles A. Schmuttenmaer, “Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy,” J. Phys. Chem. B, Vol. 110, pp. 25229-25239, August 2006
    [53] G. Gallot, Jiangquan Zhang, R. W. McGowan, Tae-In Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett., Vol. 74, No. 23, pp. 3450-3452, June 1999.
    [54] Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett., Vol. 70, No. 14, pp. 1784-1786, April 1997.
    [55] J. van Tilborg, C. B. Schroeder, Cs. Tóth, C. G. R. Geddes, E. Esarey, and W. P. Leemans, “Single-shot spatiotemporal measurements of high-field terahertz pulses,” Opt. Lett., Vol. 32, No. 3, pp. 313-315, February 2007.
    [56] Lionel Duvillaret, Ste´phane Rialland, and Jean-Louis Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation,” J. Opt. Soc. Am. B, Vol. 19, No. 11, November 2002
    [57] Jianming Dai, Jingle Liu, and Xi-Cheng Zhang, “Terahertz Wave Air Photonics: Terahertz Wave Generation and Detection With Laser-Induced Gas Plasma,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 1, pp. 183-190, January 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE