簡易檢索 / 詳目顯示

研究生: 歐俊威
Chun Wei Ou
論文名稱: 以熱蒸鍍反應技術製作二氧化錫以及三氧化二銦薄膜電晶體
Realization of SnO2 and In2O3 Thin Film Transistors through Reactive Evaporation Process
指導教授: 吳孟奇
Meng Chyi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 67
中文關鍵詞: 薄膜電晶體金屬氧化物場效遷移率臨界電壓
外文關鍵詞: thin film transistor, metal oxide, field effect mobility, threshold voltage
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,探討在充滿高純度的氧氣環境之下,以熱蒸鍍反應技術沉積 ,實現在二氧化矽為閘極介電層上的二氧化錫,以及三氧化二銦兩個薄膜電晶體。不同於先前其他的研究,我們在材料以未摻雜的條件之下,直接製作出p型導電的薄膜電晶體。在沉積二氧化錫薄膜後,藉由回火的溫度促使二氧化錫轉變為p型通道的薄膜電晶體。打開與關閉的電流開關比約為10^3,而場效電洞遷移率為0.011 cm^2/Vs。藉由兩個不同臨界電壓的薄膜電晶體,組合成一個反向器,而此反向器的輸出電壓增益達到2.8。p型通道的二氧化錫薄膜電晶體的出現,產生另一種軟性電子的應用的視野。在接近室溫的環境之下,製作5到20nm不同通道厚度的三氧化二銦薄膜。使用原子力顯微鏡觀察分析,得到以上不同的薄膜厚度建立了很濃密結晶分布,而其平均方均根的粗糙度介於0.6-0.8nm。其主要是以多晶的晶行方向排列,而方向是以(222)的排列方向為主。主動層的通道薄膜厚度是主要影響通道的電子遷移率以及電阻率的重要參數。根據這兩個二氧化錫以及三氧化二銦的薄膜電晶體,將此各一p型以及n型薄膜電晶體組合成為一反向器,得到輸出電壓增益為11。


    In this thesis, the indium oxide (In2O3) and the tin oxide (SnO2) thin film transistors were fabricated on the SiO2 gate dielectric by using reactive thermal evaporation process in the present of high purity oxygen. Different from the previous reports, the fabricated TFTs exhibit p-type conductivity in its undoped form. After depositing the SnO2 film, annealing temperature was turn to achieve p-channel TFTs. The on/off ratio and the field-effect mobility were ~ 10^3 and 0.011 cm^2 / V s, respectively. The inverter was consisted of two different threshold voltages and an output gain of 2.8 was achieved. Appearance of the p-channel SnO2 TFT adds another dimension to its application in transparent electronics. In2O3 thin films of varying thickness of 5 - 20 nm were fabricated the near room temperature. All the films were exhibited dense grain distribution with a root-mean-square roughness in the range 0.6 - 8.0 nm by using atomic force microscopy. The crystallizations of the films were polycrystalline in nature with preferred (222) orientation. The channel mobility and resistively were found to be a strong function of the thickness of the active layer. Integration of the SnO2 TFT and the In2O3 TFT resulted in complementary inverter with a gain of 11.

    Chapter 1 Introduction 1 Chapter 2 Experimental details 6 2-1 Introduction…………………………………… 6 2-2 Reactive thermal evaporator…………………7 2-3 Structural characterization…………………8 2-3.1 Atomic force microscopy…………………………8 2-3.2 X-ray photoelectron spectroscopy……………9 2-3.3 X-ray diffraction………………………………11 2-4 Conclusions………………………………………12 Chapter 3 Anomalous p-channel amorphous oxide transistors based on tin oxide and their complementary circuits 18 3-1 Introduction……………………………………18 3-2 Experiments………………………………………21 3-3 Results and Discussion………………………23 3-4 Conclusions………………………………………28 Chapter 4 Dependence of channel thickness on the performance of In2O3 thin film transistors and complementary inverter circuits consist of SnO2 thin film transistors 35 4-1 Introduction………………………………………35 4-2 Experiments…………………………………………38 4-3 Results and Discussion…………………………40 4-4 Conclusions…………………………………………48 Chapter 5 Conclusions 56 Bibliography 60 List of Publications 65

    [1] D. Sarid, Scanning Force Microscopy, Oxford Series in Optical and Imaging Sciences, Oxford University Press, New York (1991)
    [2] V. J. Morris, A. R. Kirby, A. P. Gunning, Atomic Force Microscopy for Biologists. (Book) (December 1999) Imperial College Press
    [3] Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, 2nd edition, ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1992, Chichester, UK
    [4] R. E. Presley, D. Hong, H. Q. Chang, C. M. Hung, R. L. Hoffman, and J. F. Wager, Solid-State Electron. 50, 500 (2006).
    [5] G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A. R. Ramos, E. Alves, O. Conde, and A. Amaral, J. Non-Cryst. Solids 352, 2311 (2006).
    [6] Dhananjay and C.-W. Chu, Appl. Phys. Lett. 91, 132111 (2007).
    [7] L. A. Majewski, R. Schroeder, and M. Grell, Adv. Funct. Mater. 15, 1017 (2005).
    [8] R. Ruiz, A. Papadimitratos, A. C. Mayer, and G. G. Malliaras, Adv. Mater. (Weinheim, Ger.) 17, 1795 (2005).
    [9] G. Mandel, F. F. Morehead, and P. R. Wagner, Phys. Rev. 136, A826 (1964).
    [10] E. Cetin□rg□, S. Goldsmith, Y. Rosenberg, and R. L. Boxman, J. Non- Cryst. Solids 353, 2595 (2007).
    [11] Sk. F. Ahmed, S. Khan, P. K. Ghosh, M. K. Mitra, and K. K. Chattopadhyay, J. Sol-Gel Sci. Technol. 39, 241 (2006).
    [12] Z. Ji, Z. He, Y. Song, K. Liu, and Y. Xiang, Thin Solid Films 460, 324 (2004).
    [13] M.-M. B. Mohagheghi and M. Shokooh-Saremi, Semicond. Sci. Technol. 19, 764 (2004).
    [14] L. Luxmann and R. Dobner, Metall (Berlin) 34, 821 (1980).
    [15] M. Kroneld, S. Novikov, S. Saukko, P. Kuivalainen, P. Kostamo, and V. Lantto, Sens. Actuators B 118, 110 (2006).
    [16] M. Acciarri, C. Canevali, C. M. Mari, M. Mattoni, R. Ruffo, R. Scotti, F. Morazzoni, D. Barreca, L. Armelao, E. Tondello, E. Bontempi, and L. E. Depero, Chem. Mater. 15, 2646 (2003).
    [17] M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella, and P. Siciliano, Sens. Actuators B 25, 465 (1995).
    [18] J. Jeong, S.-P. Choi, C. I. Chang, D. C. Shin, J. S. Park, B.-T. Lee, Y.-J. Park, and H.-J. Song, Solid State Commun. 127, 595 (2003).
    [19] Z. D. Guan, Z. T. Zhang, and J. S. Jiao, Physical Properties of Nonorganic Materials (Tsinghua University Press, Beijing, 1992).
    [20] C. Y. Zhang, X. M. Li, X. D. Gao, J. L. Zhao, K. S. Wan, and J. M. Bian, Chem. Phys. Lett. 420, 448 (2006).
    [21] C. Y. Kagan and P. W. E. Andry, Thin Film Transistors (Dekker, New York, 2003), p. 87.
    [22] E. Kuwahara, H. Kusai, T. Nagano, T. Takayanagi, and Y. Kubozono, Chem. Phys. Lett. 413, 379 (2005).
    [23] Forrest S R 2004 Nature 428 911
    [24] Jan Anton Koster L, Wouter J van Strien, Waldo Beek J E and Paul Blom W M 2007 Adv. Funct. Mater. 17 1297
    [25] Lee K, Kim J Y, Park S H, Kim S H, Cho S and Heeger A J 2007 Adv. Mater. 19 2445
    [26] Singh T B, Meghdadi F, Gunes S, Marjanovic N, Horowitz G, Lang F, Bauer S and Sariciftci N S 2005 Adv. Mater. 17 2315
    [27] Hsieh H-H and Wu C-C 2006 Appl. Phys. Lett. 89 041109
    [28] Song J-I, Park J-S, Kim H, Heo Y-W, Lee J-H and Kim J-J 2007 Appl. Phys. Lett. 90 022106
    [29] Hoffman R L 2006 Solid-State Electron. 50 784
    [30] Miyasako T, Senoo M and Tokumitsu E 2005 Appl. Phys. Lett. 86 162902
    [31] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
    [32] Wang L, Yoon M-H, Lu G, Yang Y, Facchetti A and Marks T J 2006 Nature Mater. 5 893
    [33] Hsieh H-H and Wu C-C 2007 Appl. Phys. Lett. 91 013502
    [34] Iwasaki T, Itagaki N, Den T, Kumomi H, Nomura K, Kamiya T and Hosono H 2007 Appl. Phys. Lett. 90 242114
    [35] Deman A-L and Tardy J 2005 Org. Electron. 6 78
    [36] Kuwahara E, Kusai H, Nagano T, Takayanagi T and Kubozono Y 2005 Chem. Phys. Lett. 413 379
    [37] Wang Y and Lieberman M 2003 Langmuir 19 1159
    [38] Kagan C Y and Andry P W E 2003 Thin Film Transistors (New York: Dekker) p 87
    [39] Oh B-Y, Jeong M-C, Ham M-H and Myoung J-M 2007 Semicond. Sci. Technol. 22 608
    [40] Dhananjay and Krupanidhi S B 2007 J. Appl. Phys. 101 123717
    [41] Levinson J, Shepherd F R, Scanlon P J, Westwood W D, Este G and Rider M 1982 J. Appl. Phys. 53 1193

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE