研究生: |
林奕丞 Lin, Yi-Cheng |
---|---|
論文名稱: |
Bi-In-Se-Te四元熱電材料系統相圖 Phase diagrams of thermoelectric Bi-In-Se-Te quaternary system |
指導教授: |
陳信文
Chen, Sinn-Wen |
口試委員: |
呂明生
王朝弘 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 相圖 、熱電材料 、相平衡 |
外文關鍵詞: | phase diagram, thermoelectric material, phase equalibra |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(硒,碲)化鉍基[Bi2(Se,Te)3-based]熱電材料是目前最廣泛商業使用的熱電材料。文獻指出當(硒,碲)化鉍中摻雜銦元素,熱電性質可能可以進一步提升。相圖提供基礎相平衡資料,對了解材料相變化與微結構變化非常重要。本研究探討Bi-In-Se-Te四元系統相圖,以作為(硒,碲)化鉍熱電材料進一步發展的基礎。
Bi-In-Se-Te系統中存在四個三元子系統,Bi-In-Se、Bi-In-Te、Bi-Se-Te與In-Se-Te。在文獻中已有Bi-In-Se和Bi-In-Te的相圖資料,本研究先以實驗探討文獻中所欠缺的In-Se-Te與Bi-Se-Te三元系統的相圖。再將Bi-In-Se、Bi-In-Te、Bi-Se-Te與In-Se-Te等三元系統的相圖,進一步建構Bi-In-Se-Te四元系統的相圖。探討的溫度選定為(硒,碲)化鉍材料所常使用溫度範圍的250oC。
本研究以純元素鉍、銦、碲與硒配製不同組成比例的三元In-Se-Te 與 Bi-Se-Te合金,並以SEM (Scanning Electron Microscopy)、EPMA(Electron Probe Microanalysis)與XRD(X-ray Diffraction)進行相平衡樣品的微結構分析、組成分析與生成相鑑定。依據所得到的三元系統相平衡結果、與其相關的二元系統相圖,進一步推定三元In-Se-Te 與 Bi-Se-Te系統的相圖。
250oC的In-Se-Te 三元系統的穩定相,包括了端點相的液相(銦)、液相(硒)與固相(碲、硒),二元相的In4Se3、In6Se7、In2Se3、InSe、In4Te3、InTe、In3Te4、In2Te3、In2Te5,以及於本研究所新發現的兩個三元相In4Se7Te9與In4SeTe2。但是上述三元相的組成範圍與邊界,仍須進一步確認。在In-Se-Te 250oC等溫橫截面圖中,共有15個三相區,為In2Se3+(Se,Te)+Liquid(Se)、Te+In2Se3+In6Se7、Te+InSe+In6Se7、Te+InSe+In7Se4Te9、Te+In2Te5+In7Se4Te9、In2Te3+In2Te5+In7Se4Te9、In2Te3+In2Te5+In7Se4Te9、In3Te4+In2Te3+In7Se4Te9、InTe+In3Te4+In7Se4Te9、InTe+InSe+In7Se4Te9、InTe+InSe+In4Te3、In4SeTe2+InSe+In4Te3、In4SeTe2+liquid(In)+In4Te3、In4SeTe2+liquid(In) +In4Se3、與In4SeTe2+InSe+In4Se3。
在250oC 的Bi-Se-Te三元系統,未發現有三元相。穩定相包括端點的固相(鉍)、液相(硒)與固相(碲、硒)。在Bi-Se與Bi-Te二元系統的複雜二元相群,簡化成Bi2Se3與(Bi2)n(Bi2Se3)m 及Bi2Te3與(Bi2)n(Bi2Te3)m。在250oC,(Bi2)n(Bi2Te3)m和(Bi2)n(Bi2Se3)m兩相完全互溶,生成(Bi2)n(Bi2(Se,Te)3)m相。Bi2Se3與Bi2Te3具有相當大的三元溶解度,但並未完全互溶。在250oC 的Bi-Se-Te等溫橫截面圖,含有(Bi2)n(Bi2(Se,Te)3)m+Bi2Te3+Bi2Se3、Bi2Te3+Bi2Se3+(Se,Te)、與Bi2Se3+(Se,Te)+ Liquid等3個三相區。
Bi2(Se,Te)3-based alloys are the most common commercial thermoelectric materials. Literatures results have indicated that their thermoelectric properties could be enhanced with indium doping. Phase diagrams provide phase equilibria information and are fundamentally important for the understanding of phase transformation and microstructural evolution. This study investigates the phase diagrams of Bi-In-Se-Te quaternary system to provide necessary data for further development of Bi2(Se,Te)3-based thermoelectric materials.
There are four constituent ternary systems, Bi-In-Se, Bi-In-Te, Bi-Se-Te and In-Se-Te in the Bi-In-Se-Te quaternary system. The phase diagrams of Bi-In-Se and Bi-In-Te systems are available in the literatures. This study experimentally determines the phase diagrams of In-Se-Te and Bi-Se-Te systems which are lacking in the literatures. The Bi-In-Se-Te quaternary phase diagram is then constructed based on the phase diagrams of their four constituent ternary systems. The temperature examined in this study is 250oC which is in the application temperature range of Bi2(Se,Te)3-based thermoelectrics.
Ternary In-Se-Te and Bi-Se-Te alloys were prepared with pure bismuth, indium, selenium and tellurium elements. The phases of the equilibrated samples were analyzed by SEM (Scanning Electron Microscopy), EPMA (Electron Probe Microanalysis) and XRD (X-ray Diffraction). The experimental results were used together with the phase diagrams of the constituent binary systems to construct the phase diagrams of ternary systems.
In the ternary In-Se-Te ternary system at 250oC, there are terminal phases, liquid (In) phase, liquid (Se) phase, and (Se,Te) solid phase, binary phases, In4Se3, In6Se7, In2Se3, InSe, In4Te3, InTe, In3Te4, In2Te3 and In2Te5 phases, and two ternary phases, In4Se7Te9 and In4SeTe2 phases. The phase boundaries and compositions of these two ternary compounds need further examinations. There are 15 three-phase regions in the In-Se-Te 250oC isothermal section, and they are In2Se3+(Se,Te)+Liquid(Se), Te+In2Se3+In6Se7, Te+InSe+In6Se7, Te+InSe+ In7Se4Te9, Te+In2Te5+In7Se4Te9, In2Te3+In2Te5+In7Se4Te9, In2Te3+In2Te5+ In7Se4Te9, In3Te4+In2Te3+ In7Se4Te9, InTe+ n3Te4+ In7Se4Te9, InTe+InSe+ In7Se4Te9, InTe+InSe+In4Te3, In4SeTe2+InSe+In4Te3, In4SeTe2+In+In4Te3, In4SeTe2+In+In4Se3 and In4SeTe2+ InSe+ In4Se3.
There is no ternary compound in the Bi-Se-Te ternary system at 250oC. The complicated binary phases in the Bi-Se and Bi-Te binary systems are grouped as Bi2Se3 and (Bi2)n(Bi2Se3)m and Bi2Te3 and (Bi2)n(Bi2Te3)m phases. The (Bi2)n(Bi2Se3)m and (Bi2)n(Bi2Te3)m form a continuous solid solution phase, (Bi2)n(Bi2(Se,Te)3)m. Both Bi2Te3 and Bi2Te3 phases have significant ternary solubilities, but they do not form a continuous solid solution. In the 250oC Bi-Se-Te isothermal section, there are 3 ternary-phase region, and are (Bi2)n(Bi2(Se,Te)3)m+ Bi2Te3+ Bi2Se3, Bi2Te3+ Bi2Se3+ (Se,Te) and Bi2Se3+ (Se,Te)+ Liquid.
1.T. M. Tritt and M. A. Subramanian, “Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View”, MRS Bulletin, Vol. 31, pp. 188-194, (2006).
2.J. Jiang, L. Chen, S. Bai, “Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering”. Materials Science and Engineering: B, Vol. 117(3) pp. 334-338, (2005).
3.S. Wang, W. Xie, H. Li, “Enhanced performances of melt spun Bi2(Te,Se)3for n-type thermoelectric legs” Intermetallics, Vol. 19(7), pp. 1024-1031, (2011).
4.W. Liu, K. C. Lukas, K. McEnaney, “Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion”. Energy & Environmental Science, Vol. 6(2), pp. 552-560, (2013).
5.L. Bu, W. Wang, H. Wang, “Electrodeposition of n-type Bi2Te3−ySey thermoelectric thin films on stainless steel and gold substrates” Applied surface science, Vol. 253(6) pp. 3360-3365, (2007).
6.H. Shi, D. Parker, M. H. Du, “Connecting thermoelectric performance and topological-insulator behavior: Bi2Te3 and Bi2Te2Se from first principles” Physical Review Applied, Vol. 3(1) pp. 014004-1-10, (2015).
7.J. Jiang, L. Chen, Q. Yao, S. Bai and Q. Wang “Effect of TeI4 content on the thermoelectric properties of n-type Bi–Te–Se crystals prepared by zone melting.” Materials Chemistry and Physics, Vol. 92, pp. 39-42, (2004).
8.J. Ko, J. Y. Kim, S. M. Choi, Y. S. Lim, W. S. Seo, and K. H. Lee “Nanograined thermoelectric Bi2Te2.7Se0.3 with ultralow phonon transport prepared from chemically exfoliated nanoplatelets.” Journal of Materials Chemistry A, Vol. 1(41), pp. 12791-12796, (2013).
9.T. E. Svechnikova, I. Y. Nikhezina, M. A. Korzhuev “Thermoelectric properties of n-Bi2Te2.7Se0.39(I,In) crystals”. Inorganic Materials, Vol. 47(12), pp. 1314-1318, (2011).
10.J. H. Yim, K. Jung, M. J. Yoo. “Preparation and thermoelectric properties of quaternary bismuth telluride–indium selenide compound”. Current Applied Physics, Vol. 11(4), pp. S46-S49, (2011).
11.J. H. Yim, S. H. Baek, H. Y. Shin “Composition-Dependent Thermoelectric Properties of n-Type Bi2Te2.7Se0.3 Doped with In4Se3”. Journal of electronic materials, Vol. 42(7), pp. 2178-2183, (2013).
12.J. R. Drabble and C. H. L. Goodman ”Chemical Bonding in Bismuth Telluride” Journal of Physics and Chemistry and Solids, Vol. 5(1-2), pp. 142-144, (1957).
13.C. B. Satterthwaite, R. W. Ure “Electrical and thermo properties of Bi2Te3.” physical review, Vol. 108(5), pp. 1164-1170, (1957).
14.A. L. Bassi, A. Bailini, C. S. Casari, F. Donati, A. Mantegazza, M. Passoni, V. Russo, and C. E. Bottani “Thermoelectric properties of Bi Te films with controlled structure and morphology.” Journal of applied physics, vol. 105 pp. 124307-1-124307-9, (2009).
15.S. S. Kim, F. Yin and Y. Kagawa ”Thermoelectricity for crystallographic anisotropycontrolled Bi-Te based alloys and p-n modules.” Journal of alloys and compounds, Vol. 419, pp. 306-311, (2006).
16.S. Nakajima “The crystal structure of Bi2Te3-xSex.” Journal of Physics and Chemistry Solids, Vol. 24 pp. 479-485, (1962).
17.P. Tedenac, D. G. P. Vassilev, B. Daouchi “Low‐temperature Region of the In–Se System.” Crystal Research and Technology, Vol. 32(4), pp. 605-616, (1997).
18.T. Gödecke, T. Haalboom, F. Sommer “Stable and metastable phase equilibria of the In-Se system.” Journal of phase equilibria, Vol. 19(6), pp. 572-576, (1998).
19.J. B. Li, M. C. Record and J. C. Tedenac “A thermodynamic assessment of the In-Se system”. Zeitschrift für Metallkunde, Vol. 94(4), pp. 381-389, (2003).
20.H. Okamoto, “In-Te(Indium-Tellurium)” Binary alloy phase diagram, 2ed., Vol. 3, pp. 2301-2304, (1990)
21.C. S. Oh and D. N. Lee “Thermodynamic assessment of the In-Te and Al-Te systems”. Calphad, Vol. 17(2), pp.175-187, (1993).
22.V. P. Zlomanov, M. S. Sheiman, B. Legendre “Phase diagram and thermodynamic properties of phases in the In-Te system.” Journal of phase equilibria, Vol. 22(3) pp. 339-344, (2001).
23.Y. Tsuchiva “Structural phase transitions in the liquid state and the melting enthalpy of the Se-Te system”. Journal of Physics C: Solid State Physics, pp. 1209-1215, Vol. 20(9), (1987).
24.G. Ghosh, R. C. Sharma, D. T. Li and Y. A. Chang “The Se-Te (selenium-Tellurium) system”. Journal of phase equilibria, Vol. 15(2), pp.213-224, (1994).
25.G. Ghosh, H. L. Jukas and L. Delaey, “A thermodynamic assessment of the Se-Te system”. Calphad, Vol. 12(3), pp. 295-299, (1988).
26.N. K. Abrikosov, V. F. Bankina, K. F. Kharitonovich “Issledovanie diagrammy sostoyaniya sistemy Bi-Se” Russian Journal of Inorganic Chemistry, Vol. 5(9), (1960).
27.H. Gobrecht, K. E. Boeters, G. Pantzer “Über Kristallstruktur und elektrische Eigenschaften der Wismutselenide Bi2Se2 und Bi2Se3”. Zeitschrift für Physik,Vol. 177(1), pp. 68-83, (1964).
28. H. Okamoto “The Bi-Se (bismuth-selenium) system”. Journal of phase equilibria, Vol. 15(2), pp.195-201, (1994).
29.Y. Chen. Y. Liu M. Chu “Phase diagrams and thermodynamic descriptions for the Bi-Se and Zn-Se binary systems”. Journal of Alloys and Compounds, pp. 423-428, (2014).
30.D. S. Evans and A. Prince, “Bi-In system”, Metal science, Vol.17(3), pp. 117-123, (1983).
31.H. Okamoto, “Bi-In (Bismuth-Indium)”, Binary phase diagrams, 2 ed., Vol.1, pp. 748-751, (1990).
32.P. Y. Chevalier, “A thermodynamic evaluation of the Bi-In system”, Calphad, Vol. 12(4), pp. 383-392, (1988).
33.F. Körber and U. Haschimoto, “Zeitschrift für anorganische und allgemeine”Chemie, Vol. 188, pp. 114-126, (1930).
34.N. K. Abrikosov and V. F. Bankina, Journal of Inorganic Chemistry, Vol. 3(3), pp. 152-165, (1958).
35.R. F. Brebrick “Characterization of phases in the 50-60 at.% Te region of the Bi-Te system by X-ray powder diffraction patterns”. Journal of Applied Crystallography, Vol. 1(4), pp. 241-246, (1968).
36.K. Yamana, K. Kihara and T. Matsumoto “Bismuth tellurides: BiTe and Bi4Te3”. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 35(1), pp. 147-149, (1979).
37.H. Okamoto and L. E. Tanner “Binary alloy phase diagrams” 2nd edition, Vol. 1, pp. 800-801, (1990).
38.C. Mao, M. Tan, L. Zhang, D. Wu, W. Bai and L. Liu “Experimental reinvestigation and thermodynamic description of Bi-Te binary system” Elsevier, Vol. 60, pp.81-89, (2018).
39.H. G. Bouanani, D. Eddike, B. Liautard and G. Burn, “Solid state demixing in Bi2Se3-Bi2Te3 and Bi2Se3-In2Se3 phase diagrams.”, Materials Research Bulletin, Vol. 31(2), pp. 177-187, (1996).
40.M. G. Safarov, R. S. Gamidov, P. M. Poladov and E. M. Bagirova, “The Bi2Se3-InSe system”, Russian Journal of Inorganic Chemistry, Vol. 37 pp. 228-229, (1992).
41.S. W. Chen, S. T. Lu and J. S. Chang, “Bi-In-Se phase diagram”, Journal of alloys and compounds, Vol. 722 pp. 499-508, (2017).
42.S. J. Hong, B. S. Chun “Microstructure and thermoelectric properties of extruded n-type 95%Bi2Te2–5%Bi2Se3 alloy along bar length”. Materials Science and Engineering: A, Vo,l. 356(1) pp. 345-351, (2003).
43.O. B. Sokolov, S. Y. Skipidarov, N. I. Duvankov “Chemical reactions on the Bi2Te3–Bi2Se3 section in the process of crystal growth”. Journal of crystal growth, Vol. 262(1) pp. 442-448, (2004).
44.J. Y. Cho, Y. S. Lim, S. M. Choi, K. H. Kim, W. S. Seo and H. H. Park “Thermoelectric Properties of Spark Plasma-Sintered” Journal of Electronic Materials, Vol. 40(5), pp. 1024-1028, (2011).
45.X. Shi, J. Y. Cho, J. R. Salvador, J. Yang and H. Wang “Thermoelectric properties of polycrystalline In4Se3 and In4Te3”. American Institute of Physics, pp. 162108-1-162108-3, (2010).
46.D. Huo, G. Tang, C. Fu and L. Li “Synthesis and Transport Properties of In4(Se1−xTex)3” Journal of Electronic Materials, Vol. 40(5), pp. 1202-1205, (2011).