簡易檢索 / 詳目顯示

研究生: 吳嬋娟
Ng, Sim-Kun
論文名稱: 臺灣鱟醣結合蛋白新穎抗菌功能探索及分析
Discovery and Characterization of Novel Antibacterial Features of Taiwanese Horseshoe Crab Glycan-Binding Protein
指導教授: 張大慈
Chang, Dah-Tsyr
口試委員: 張晃猷
Chang, Hwan-You
蘇士哲
Sue, Shih-Che
藍忠昱
Lan, Chung-Yu
吳東昆
Wu, Tung-Kung
邱政洵
Chiu, Cheng-Hsun
周維宜
Chou, Wei-I
劉錫輝
Liu, Shi-Hwei
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 161
中文關鍵詞: 醣結合蛋白病原性細菌蛋白質—醣分子交互作用生物膜綠膿桿菌
外文關鍵詞: Glycan-Binding Protein, Pathogenic Bacteria, Protein-Glycan Interaction, Biofilm, Pseudomonas aeruginosa
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抗藥性細菌的感染問題日益嚴重,現今大部分抗生素對抗藥性細菌無效,因此新型抗菌劑的研發非常迫切。綠膿桿菌是其中一種具嚴重威脅的病原菌,為8到10%感染疾病的主因。病原菌表面的病原相關分子模式 (PAMP),特別是醣分子在宿主與病原菌之間的交互作用扮演重要角色。因此,以細菌表面醣分子作為藥物標靶可能提供新的抗菌藥物研發策略。科學家分別在2000年及2006年從臺灣鱟血漿分離具細菌脂多醣內毒素 (LPS) 辨識能力的鱟血漿凝集素 (HPL)並分析功能,其蛋白質序列迴異於其他已知蛋白質、且重組蛋白質溶解度極低。2014年本實驗室成功於大腸桿菌細胞內表現並純化可溶性重組HPL (rHPL),鑑定rHPL具混合性之二級結構,且雙硫鍵之形成對其細菌結合功能非常重要。利用醣晶片及高靈敏度磁減量檢測試驗證實rHPL可專一性結合鼠李糖,此醣常出現於細菌表面之病原相關分子模式,但人類細胞則無。2016年進一步證明有機合成的多價性鼠李糖能有效增加與rHPL結合能力,利用等溫滴定熱量儀測定rHPL與含鼠李糖之醣蛋白解離常數屬微莫爾 (μM) 範圍。此外rHPL可凝集綠膿桿菌PAO1及PA14,並能抑制此兩種菌株之生物膜形成及其造成的宿主細胞毒性。本論文具體貢獻為發現鼠李糖結合蛋白rHPL與致病菌交互作用之分子機制,未來可開發為新穎生醫應用材料。


    Rapid emergence of multiple-drug resistance (MDR) of pathogens, together with sluggish discovery of new antibacterial agents has led to the need for high demand of alternative treatments. Among which Pseudomonas aeruginosa involves in around 8−10% of all healthcare-associated infections. Cell surface pathogen-associated molecular patterns (PAMPs) especially glycan moieties play important roles in host-pathogen interaction. Hence bacterial cell surface polysaccharide components have drawn research attention as molecular targets for new therapeutic development. Among various natural resources a Taiwanese horseshoe crab plasma lectin (HPL) has been identified to recognize lipopolysaccharide (LPS) on bacterial cell wall in 2000 followed by functional characterization in 2006. Our laboratory has generated soluble recombinant HPL (rHPL) in an Escherichia coli expression system in 2014. rHPL possssed a mixed secondary structure, and disulfide bond formation was essential for its bacterial binding activity. Both glycan array screening and magnetic reduction (MR) assays revealed that rHPL specifically recognized a unique glycan moiety, rhamnose, located on bacterial PAMPs but not human cell surface. In 2017 multivaent rhamnobosides were synthesized to show higher binding affinities to rHPL than L-rhamnose monosaccharide did. Binding constant between rHPL and rhamnose-containing protein was determined to be in micro-molar range. Moreover, rHPL was discovered to aggregate P. aeruginosa and also inhibit biofilm formation and host cell infection of 2 strains PAO1 and PA14 in a dose dependent manner. Taken together, rHPL may serve as a rhamnose binding protein acting as a natural pathogen recognition molecule, and may further facilitate development of novel diagnostic and therapeutic agent.

    Abstract I 摘要 II Acknowledgement III Contents IV Abbreviation XI Chapter 1 Introduction 1 1.1 Infection disease and antibiotics resistance 1 1.2 Pseudomonas aeruginosa 2 1.3 Biofilm of Pseudomonas aeruginosa 3 1.4 Lectin 5 1.5 Lectins from horseshoe crab 7 1.6 Horseshoe crab plasma lectin (HPL) 10 1.7 Research motivation 12 Chapter 2 Materials and Methods 14 2.1 Microbial strains, plasmids and culture media 14 2.2 Chemicals and antibodies 15 2.3 Preparation of competent cells 15 2.4 Expression of recombinant proteins in E. coli BL21-Rosetta (DE3) 16 2.5 Purification of rHPL 17 2.6 Protein buffer exchange and concentration 17 2.7 Bicinchoninic acid (BCA) assay for concentration determination 18 2.8 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 18 2.9 Far-UV Circular Dichroism 19 2.10 Magnetic Reduction (MR) assay 19 2.11 Enzyme-linked immunosorbent assay (ELISA) 20 2.12 Isothermal titration calorimetry (ITC) 22 2.13 Hemagglutinating assay 22 2.14 Colony formation assay for rHPL-treated P. aeruginosa 23 2.15 Growth cruve of rHPL-treated P. aeruginosa 23 2.16 Bacterial agglutination activity of rHPL 24 2.17 Anti-Biofilm Assay 24 2.18 Anti-A549 infection assay 25 2.19 Statistical analysis 26 Chapter 3 Results 27 3.1 Expression and purification of rHPL 27 3.2 Secondary structure analysis of rHPL 27 3.3 Importance of disulfide bond formation for LPS-binding activity of rHPL 28 3.4 Determination of rHPL-glycan binding preference by glycan array 29 3.5 Determination of direct binding between rHPL and L-Rha by Magnetic Reduction (MR) assay 31 3.6 Inhibitory effect of L-Rha and Rha-BSA conjugate on rHPL-LPS/bacteria interaction 32 3.7 Inhibitory effect of synthetic L-rhamnosides on rHPL-bacteria interaction 34 3.8 Binding affinity of rHPL to synthetic Rha-AD-BSA 37 3.9 Binding constants determination between rHPL and Rha-AD-BSA 38 3.10 rHPL showed no hemagglutination activity to sheep and rabbit erythrocytes 39 3.11 Binding activities of rHPL to P. aeruginosa PAO1 and PA14 40 3.12 Colony formation effect of rHPL to P. aeruginosa PAO1 and PA14 40 3.13 Cell growth effect of rHPL to P. aeruginosa PAO1 and PA14 41 3.14 Agglutination activity of rHPL to P. aeruginosa PAO1 and PA14 41 3.15 Inhibitory effect of rHPL on biofilm of P. aeruginosa PAO1 and PA14 42 3.16 Inhibitory effect of rHPL on P. aeruginosa PAO1 and PA14 cytotoxicity to A549 cells 44 Chapter 4 Discussion 46 4.1 Conclusion 46 4.2 Structure analysis of rHPL 48 4.3 Glycan binding preference of rHPL 50 4.4 Importance of rhamnose in pathogens 54 4.5 Comparison between rHPL and tachylectin-3 56 4.6 Comparison between rHPL and rhamnose-binding lectins 57 4.7 Antibacterial features of rHPL 58 4.8 Strategies for the treatment of P. aeruginosa infections 62 4.9 Prospects of rHPL 63 Chapter 5 Reference 66 Figure 81 Figure 1-1 Antibiotic mechanisms of action [145] 81 Figure 1-2 LPS of P. aeruginosa 82 Figure 1-3 Five stages of biofilm development 83 Figure 1-4 Structure of exopolysaccharides of P. aeruginosa biofilm 84 Figure 1-5 Innate immune system of horseshoe crab [49] 85 Figure 1-6 Sequence alignment of nHPL and TL-3 86 Figure 1-7 Putative secondary and tertiary structure of nHPL 87 Figure 1-8 Integration of key strategies in rHPL collaboration project: Fighting pathogenic bacteria with Taiwanese horseshoe crab glycan-binding proteins 88 Figure 3-1 Purification and characterization of rHPL expressed in E. coli 90 Figure 3-2 Circular dichroism spectrum of rHPL 91 Figure 3-3 LPS binding activity of DTT-treated rHPL 92 Figure 3-4 Glycan binding activity of rHPL determined by a glycan array 93 Figure 3-5 Glycan binding activity of rHPL determined by magnetic reduction assay 94 Figure 3-6 Inhibitory effect of L-rhamnose monosaccharide and Rha-BSA on rHPL-LPS/bacteria interaction 95 Figure 3-7 Inhibitory effect of rhamnobosides on rHPL-bacteria interaction 97 Figure 3-8 Synthesis scheme of Rha-AD-BSA 98 Figure 3-9 Molecular weight determination of Rha-AD-BSAs 99 Figure 3-10 Binding affinities of rHPL to Rha-AD-BSA determined by ELISA 100 Figure 3-11 Binding affinities of rHPL to Rha-AD-BSA #6 determined by ITC 101 Figure 3-12 rHPL effect on hemagglutination activity 102 Figure 3-13 Comparison of binding activities of rHPL to P. aeruginosa PAO1 and PA14 103 Figure 3-14 Effect of rHPL on P. aeruginosa PAO1 and PA14 colony formation 104 Figure 3-15 rHPL effect on growth curve of P. aeruginosa PAO1 and PA14 105 Figure 3-16 rHPL effect on bacterial agglutination of P. aeruginosa PAO1 and PA14 106 Figure 3-17 Inhibitory effect on biofilm formation of P. aeruginosa PAO1 and PA14 by rHPL 107 Figure 3-18 Inhibitory effect on mature biofilm of P. aeruginosa PAO1 and PA14 by rHPL 108 Figure 3-19 rHPL effect on P. aeruginosa PAO1 and PA14 infection to A549 cells by rHPL 109 Table 110 Table 1-1 O-specific antigen repeating units of 20 IATS P. aeruginosa strains 110 Table 1-2 Lectins from marine organisms 112 Table 3-1 Relative binding percentage of DTT-treated rHPL to LPSs 114 Table 3-2 rHPL binding signals to glycans on CFG array v5.1 115 Table 3-3 Magnetic reduction of rHPL-conjugated MNPs titrated with analytes (D-galactose, L-rhamnose, or LPS of P. aeruginosa O10) 116 Table 3-4 Inhibitory effect of L-rhamnose and L-rhamnose-BSA conjugate on rHPL-LPS/bacteria interaction 117 Table 3-5 Inhibitory effects of multivalent rhamnobiosides to rHPL-bacteria interaction 118 Table 3-6 Rhamnose contents and rHPL-binding affinities of Rha-AD-BSAs 119 Table 3-7 Binding constants of rHPL to Rha-AD-BSA #6 measuring by ITC 120 Table 3-8 Binding activities of rHPL to P. aeruginosa PAO1 and PA14 121 Table 3-9 Inhibitory effect of rHPL on colony formation of P. aeruginosa PAO1 and PA14 122 Table 3-10 Inhibitory effect of rHPL on biofilm formation of P. aeruginosa PAO1 and PA14 123 Table 3-11 Inhibitory effect of rHPL on biofilm maintenance of P. aeruginosa PAO1 and PA14 124 Table 3-12 Inhibitory effect of rHPL on cytotoxicity of P. aeruginosa PAO1 and PA14 to A549 cells 125 Table 4-1 Comparison between rHPL and TL-3 126 Table 4-2 Effect of rHPL on P. aeruginosa PAO1 and PA14 127 Appendix 128 Appendix Figure 1 pET-23a-d(+) vector map 128 Appendix Figure 2 Binding activity of rHPL to clinically-isolated bacteria 129 Appendix Figure 3 Multivalent rhamnosides synthesized by Dr. Anikó Borbás 133 Appendix Figure 4 Chemical structures of different rhamnolipids 134 Appendix Figure 5 Multiple sequence alignment of rHPL and RBLs 135 Appendix Figure 6 Effect of rHPL on P. aeruginosa PAO1 biofilm formation 137 Appendix Figure 7 Effect of rHPL on P. aeruginosa PA14 biofilm formation 139 Appendix Table 1 Glycan list of CFG array v5.1 140 (http://www.functionalglycomics.org/static/index.shtml) 140 Appendix Table 2 Blood group A-pentasaccharide and similar glycans on CFG array v5.1 161

    Chapter 1
    1. Fleming A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. Influenzæ. British Journal of Experimental Pathology. 1929;10(3):226–36.
    2. Wright GD. The antibiotic resistome: The nexus of chemical and genetic diversity. Nature Reviews Microbiology. 2007;5(3):175-86.
    3. Kerr KG, et al. Pseudomonas aeruginosa: A formidable and ever-present adversary. Journal of Hospital Infection. 2009;73(4):338-44.
    4. Fox JL. Antimicrobial peptides stage a comeback. Nature Biotechnology. 2013;31(5):379-82.
    5. Allahverdiyev AM, et al. Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Review of Anti-infective Therapy. 2011;9(11):1035-52.
    6. Poole K. Pseudomonas aeruginosa: Resistance to the max. Front Microbiology. 2011;2:65.
    7. Knirel YA, et al. Conserved and variable structural features in the lipopolysaccharide of Pseudomonas aeruginosa. Journal of Endotoxin Research. 2006;12(6):324-36.
    8. Lam JS, et al. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiology. 2011;2:118.
    9. Liu PV. Comparison of the chinese schema and the international antigenic typing system for serotyping Pseudomonas aeruginosa. Journal of Clinical Microbiology. 1987;25(5):824-6.
    10. Montero M, et al. Effectiveness and safety of colistin for the treatment of multidrug-resistant Pseudomonas aeruginosa infections. Infection. 2009;37(5):461-5.
    11. Czaran T, et al. Janus-headed communication promotes bacterial cooperation and cheating: Is quorum sensing useful against infections? Virulence. 2010;1(5):402-3.
    12. Pier GB, et al. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proceedings of the National Academy of Sciences. 1997;94(22):12088-93.
    13. Hoiby N, et al. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiology. 2010;5(11):1663-74.
    14. Tsuneda S, et al. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiology Letters. 2003;223(2):287-92.
    15. Flemming HC, et al. The biofilm matrix. Nature Reviews Microbiology. 2010;8(9):623-33.
    16. Rasamiravaka T, et al. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Research International. 2015;2015:759348.
    17. Ryder C, et al. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Current Opinion in Microbiology. 2007;10(6):644-8.
    18. Ghafoor A, et al. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Applied and Environmental Microbiology. 2011;77(15):5238-46.
    19. Rehm BH, et al. Bacterial alginates: Biosynthesis and applications. Applied Microbiology and Biotechnology. 1997;48(3):281-8.
    20. Sutherland I. Biofilm exopolysaccharides: A strong and sticky framework. Microbiology. 2001;147(Pt 1):3-9.
    21. Byrd MS, et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Molecular Microbiology. 2009;73(4):622-38.
    22. Jennings LK, et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proceedings of the National Academy of Sciences. 2015;112(36):11353-8.
    23. Holby N. Pseudomonas aeruginosa infection in cystic fibrosis. Relative prevalence of antibodies in serum against cathodic and anodic migrating P. aeruginosa antigens determined by immunoelectrophoretic methods. Acta Pathologica Et Microbiologica Scandinavica Section C, Immunology. 1977;85(2):149-52.
    24. Govan JR, et al. Pseudomonas aeruginosa and cystic fibrosis: Unusual bacterial adaptation and pathogenesis. Microbiological Sciences. 1986;3(10):302-8.
    25. Yang L, et al. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environmental Microbiology. 2011;13(7):1705-17.
    26. Ghafoor A, et al. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Applied and Environmental Microbiology. 2011;77(15):5238-46.
    27. Colvin KM, et al. The pel and psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environmental Microbiology. 2012;14(8):1913-28.
    28. Mah TF, et al. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34-9.
    29. Burmolle M, et al. Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections. FEMS Immunology and Medical Microbiology. 2010;59(3):324-36.
    30. Bies C, et al. Lectin-mediated drug targeting: History and applications. Advanced Drug Delivery Reviews. 2004;56(4):425-35.
    31. Loris R. Principles of structures of animal and plant lectins. Biochim Biophys Acta. 2002;1572(2-3):198-208.
    32. Gupta GS. Animal lectins : Form, function and clinical applications. New York, NY: Springer; 2012.
    33. Vasta GR, et al. Animal lectins as cell surface receptors: Current status for invertebrate species. Progress in Molecular and Subcellular Biology. 1996;17:158-82.
    34. Kaltner H, et al. Animal lectins as cell adhesion molecules. Acta anatomica. 1998;161(1-4):162-79.
    35. Kilpatrick DC. Animal lectins: A historical introduction and overview. Biochimica et Biophysica Acta. 2002;1572(2-3):187-97.
    36. Vasta GR, et al. Animal lectins as self/non-self recognition molecules. Biochemical and genetic approaches to understanding their biological roles and evolution. Annals of the New York Academy of Sciences. 1994;712:55-73.
    37. Mukherjee S, et al. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature. 2014;505(7481):103-7.
    38. Paz I, et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol. 2010;12(4):530-44.
    39. Thurston TL, et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 2012;482(7385):414-8.
    40. Chernikov OV, et al. Lectins of marine hydrobionts. Biochemistry (Mosc). 2013;78(7):760-70.
    41. Ogawa T, et al. Diversified carbohydrate-binding lectins from marine resources. J Amino Acids. 2011;2011:838914.
    42. Obst M, et al. Molecular phylogeny of extant horseshoe crabs (Xiphosura, limulidae) indicates Paleogene diversification of asian species. Mol Phylogenet Evol. 2012;62(1):21-6.
    43. Iwanaga S, et al. Recent advances in the innate immunity of invertebrate animals. Journal of Biochemistry and Molecular Biology. 2005;38(2):128-50.
    44. Kawabata S, et al. Role of lectins in the innate immunity of horseshoe crab. Developmental and Comparative Immunology. 1999;23(4-5):391-400.
    45. Iwanaga S, et al. New types of clotting factors and defense molecules found in horseshoe crab hemolymph: Their structures and functions. Journal of Biochemistry. 1998;123(1):1-15.
    46. Iwanaga S, et al. Role of hemocyte-derived granular components in invertebrate defense. Annals of the New York Academy of Sciences. 1994;712:102-16.
    47. Iwanaga S, et al. Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Frontiers in Bioscience. 1998;3:D973-84.
    48. Iwanaga S. Primitive coagulation systems and their message to modern biology. Thrombosis and Haemostasis. 1993;70(1):48-55.
    49. Iwanaga S. The limulus clotting reaction. Current Opinion in Immunology. 1993;5(1):74-82.
    50. Kawabata S, et al. Sadaaki Iwanaga: Discovery of the lipopolysaccharide- and beta-1,3-D-glucan-mediated proteolytic cascade and unique proteins in invertebrate immunity. Journal of Biochemistry. 2010;147(5):611-8.
    51. Iwanaga S. The molecular basis of innate immunity in the horseshoe crab. Current Opinion in Immunologys. 2002;14(1):87-95.
    52. Kairies N, et al. The 2.0-A crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. Proceedings of the National Academy of Sciences. 2001;98(24):13519-24.
    53. Beisel HG, et al. Tachylectin-2: Crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the japanese horseshoe crab Tachypleus tridentatus. The EMBO Journal 1999;18(9):2313-22.
    54. Kuo TH, et al. Ligand specificities and structural requirements of two Tachypleus plasma lectins for bacterial trapping. Biochemical Journal. 2006;393(Pt 3):757-66.
    55. Saito T, et al. A novel type of limulus lectin-L6. Purification, primary structure, and antibacterial activity. The Journal of Biological Chemistry. 1995;270(24):14493-9.
    56. Okino N, et al. Purification, characterization, and cdna cloning of a 27-kDa lectin (L10) from horseshoe crab hemocytes. The Journal of Biological Chemistry. 1995;270(52):31008-15.
    57. Inamori K, et al. A newly identified horseshoe crab lectin with specificity for blood group A antigen recognizes specific O-antigens of bacterial lipopolysaccharides. The Journal of Biological Chemistry. 1999;274(6):3272-8.
    58. Saito T, et al. A newly identified horseshoe crab lectin with binding specificity to O-antigen of bacterial lipopolysaccharides. The Journal of Biological Chemistry. 1997;272(49):30703-8.
    59. Honda S, et al. Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. The Journal of Biological Chemistry. 2000;275(42):33151-7.
    60. Gokudan S, et al. Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proceedings of the National Academy of Sciences. 1999;96(18):10086-91.
    61. Norman K, et al. The 2.0-A crystal structure of tachylectin 5a provides evidence for the common origin of the innate immunity and the blood coagulation systems. Biochemistry. 2001;98:13519-24.
    62. Chiou ST, et al. Isolation and characterization of proteins that bind to galactose, lipopolysaccharide of Escherichia coli, and protein a of staphylococcus aureus from the hemolymph of Tachypleus tridentatus. The Journal of Biological Chemistry. 2000;275(3):1630-4.
    63. Chen SC, et al. Biochemical properties and cdna cloning of two new lectins from the plasma of Tachypleus tridentatus: Tachypleus plasma lectin 1 and 2. The Journal of Biological Chemistry. 2001;276(13):9631-9.
    64. Low EL. Characterization of bacteria and ligand binding activities of recombinant Tachypleus plasma lectin 2. National Tsing Hua University Master Thesis. 2010.
    65. Huang Y-T. Functional characterization of bacteria and ligand binding activities of recombinant Tachypleus plasma lectin. National Tsing Hua University Master Thesis. 2013.
    66. Ng SK, et al. A recombinant horseshoe crab plasma lectin recognizes specific pathogen-associated molecular patterns of bacteria through rhamnose. PLoS One. 2014;9(12):e115296.
    67. Huang YC, et al. Clinical outcome of Mycobacterium abscessus infection and antimicrobial susceptibility testing. Journal of Microbiology, Immunology and Infection. 2010;43(5):401-6.
    68. Hong CY, et al. Magnetic susceptibility reduction method for magnetically labeled immunoassay. Applied Physics Letters. 2006;88(21).
    69. Chieh JJ, et al. Immunomagnetic reduction assay using high-Tc superconducting-quantum-interference-device-based magnetosusceptometry. Journal of Applied Physics. 2010;107(7).
    70. Jiang W, et al. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. Journal of Magnetism and Magnetic Materials. 2004;283(2–3):210-4.
    71. Yang SY, et al. Dual immobilization and magnetic manipulation of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials. 2008;320(21):2688-91.
    72. O'Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;(47).
    73. Rost B, et al. The predictprotein server. Nucleic Acids Res. 2004;32 (Web Server issue):W321-6.
    74. Raman R, et al. Glycomics: An integrated systems approach to structure-function relationships of glycans. Nature Methods. 2005;2(11):817-24.
    75. Heimburg-Molinaro J, et al. Preparation and analysis of glycan microarrays. Current Protocols in Protein Science. 2011; Chapter 12:Unit12 0.
    76. Collins BE, et al. Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Current Opinion in Chemical Biology. 2004;8(6):617-25.
    77. Lee YC, et al. Carbohydrate-protein interactions: Basis of glycobiology. Accounts of Chemical Research. 1995;28(8):321-7.
    78. Lundquist JJ, et al. The cluster glycoside effect. Chem Rev. 2002;102(2):555-78.
    79. Lightfoot J, et al. Chromosomal mapping, expression and synthesis of lipopolysaccharide in Pseudomonas aeruginosa: A role for guanosine diphospho (GDP)-D-mannose. Molecular Microbiology. 1993;8(4):771-82.
    80. Burrows LL, et al. Molecular characterization of the Pseudomonas aeruginosa serotype O5 (PAO1) B-band lipopolysaccharide gene cluster. Molecular Microbiology. 1996;22(3):481-95.
    81. Hao Y, et al. Single-nucleotide polymorphisms found in the miga and wbpx glycosyltransferase genes account for the intrinsic lipopolysaccharide defects exhibited by Pseudomonas aeruginosa pa14. Journal of Bacteriology. 2015;197(17):2780-91.
    82. Utarabhand P, et al. Sialic acid-specific lectin participates in an immune response and ovarian development of the banana shrimp Fenneropenaeus merguiensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2017;203:132-40.
    83. Mah TF, et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 2003;426(6964):306-10.
    84. Sharma G, et al. Pseudomonas aeruginosa biofilm: Potential therapeutic targets. Biologicals. 2014;42(1):1-7.
    85. Hoiby N, et al. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010;5(11):1663-74.
    86. Xu H, et al. Identification and characterization of disulfide bonds in proteins and peptides from tandem ms data by use of the massmatrix MS/MS search engine. Journal of Proteome Research. 2008;7(1):138-44.
    87. Chan Y-E. In silico identification and in vitro characterization of bacteria/ligand binding residues governing antibacterial function of recombinant horseshoe crab plasma lectin. Master Thesis-National Tsing Hua Univdresity. 2015.
    88. Yokota S, et al. Characterization of a polysaccharide component of lipopolysaccharide from Pseudomonas aeruginosa IID 1008 (ATCC 27584) as D-rhamnan. European Journal of Biochemistry. 1987;167(2):203-9.
    89. Li Q, et al. Genetic variation of dTDP-L-rhamnose pathway genes in Salmonella enterica. Microbiology. 2000;146 (Pt 9):2291-307.
    90. Chiang SL, et al. Rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infection and Immunity. 1999;67(2):976-80.
    91. Yamashita Y, et al. Recombination between gtfb and gtfc is required for survival of a dTDP-rhamnose synthesis-deficient mutant of Streptococcus mutans in the presence of sucrose. Infection and Immunity. 1999;67(7):3693-7.
    92. Giraud MF, et al. The rhamnose pathway. Current Opinion in Structural Biology 2000;10(6):687-96.
    93. Ma Y, et al. Drug targeting Mycobacterium tuberculosis cell wall synthesis: Genetics of dtdp-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrobial Agents and Chemotherapy. 2001;45(5):1407-16.
    94. Bozue JA, et al. Construction of a rhamnose mutation in Bacillus anthracis affects adherence to macrophages but not virulence in guinea pigs. Microbial Pathogenesis. 2005;38(1):1-12.
    95. Poon KK, et al. Functional characterization of MigA and WapR: Putative rhamnosyltransferases involved in outer core oligosaccharide biosynthesis of Pseudomonas aeruginosa. Journal of Bacteriology. 2008;190(6):1857-65.
    96. Lee YC. Carbohydrate-protein interactions: Basis of glycobiology. Accounts of Chemical Research. 1995;28(8):7.
    97. Gan SD, et al. Enzyme immunoassay and enzyme-linked immunosorbent assay. Journal of Investigative Dermatology. 2013;133(9):e12.
    98. Abdel-Mawgoud AM, et al. Rhamnolipids: Diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology. 2010;86(5):1323-36.
    99. Caffall KH, et al. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research. 2009;344(14):1879-900.
    100. Pettolino F, et al. Hyphal cell walls from the plant pathogen Rhynchosporium secalis contain (1,3/1,6)-beta-D-glucans, galacto- and rhamnomannans, (1,3;1,4)-beta-D-glucans and chitin. The FEBS Journal. 2009;276(14):3698-709.
    101. Yoshida H, et al. Structure of L-rhamnose isomerase in complex with L-rhamnopyranose demonstrates the sugar-ring opening mechanism and the role of a substrate sub-binding site. FEBS Open Bio. 2013;3:35-40.
    102. Kocharova NA, et al. Structure of an atypical O-antigen polysaccharide of Helicobacter pylori containing a novel monosaccharide 3-C-methyl-D-mannose. Biochemistry. 2000;39(16):4755-60.
    103. Doran TI, et al. Association of type- and group-specific antigens with the cell wall of serotype III group B Streptococcus. Infection and Immunity. 1982;36(3):1115-22.
    104. Krause RM. Symposium on relationship of structure of microorganisms to their immunological properties. Iv. Antigenic and biochemical composition of hemolytic streptococcal cell walls. Bacteriological Reviews. 1963;27:369-80.
    105. Kamisango K, et al. Structural and immunochemical studies of teichoic acid of Listeria monocytogenes. Journal of Biochemistry. 1983;93(5):1401-9.
    106. Maki M, et al. Biosynthesis of 6-deoxyhexose glycans in bacteria. Glycobiology. 2004;14(3):1R-15R.
    107. Carvalho F, et al. L-rhamnosylation of Listeria monocytogenes wall teichoic acids promotes resistance to antimicrobial peptides by delaying interaction with the membrane. PLOS Pathogens. 2015;11(5):e1004919.
    108. Nagata E, et al. Serotype-specific polysaccharide of Streptococcus mutans contributes to infectivity in endocarditis. Oral microbiology and immunology. 2006;21(6):420-3.
    109. Lindhout T, et al. Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology. 2009;155(Pt 10):3449-60.
    110. Sotirova AV, et al. Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and Gram-negative bacterial strains. Current Microbiology. 2008;56(6):639-44.
    111. Pinto MR, et al. Involvement of peptidorhamnomannan in the interaction of Pseudallescheria boydii and HeP2 cells. Microbes Infect. 2004;6(14):1259-67.
    112. Ryan CM, et al. Chemical structure of Trichomonas vaginalis surface lipoglycan: A role for short galactose (beta1-4/3) n-acetylglucosamine repeats in host cell interaction. The Journal of Biological Chemistry. 2011;286(47):40494-508.
    113. Shirai T, et al. Structure of rhamnose-binding lectin CSL3: Unique pseudo-tetrameric architecture of a pattern recognition protein. Journal of Molecular Biology. 2009;391(2):390-403.
    114. Naganuma T, et al. Isolation, characterization and molecular evolution of a novel pearl shell lectin from a marine bivalve, Pteria penguin. Molecular Diversity. 2006;10(4):607-18.
    115. Tateno H, et al. A novel rhamnose-binding lectin family from eggs of steelhead trout (Oncorhynchus mykiss) with different structures and tissue distribution. Bioscience, Biotechnology, and Biochemistry. 2001;65(6):1328-38.
    116. Hosono M, et al. Three rhamnose-binding lectins from Osmerus eperlanus mordax (olive rainbow smelt) roe. Biological and Pharmaceutical Bulletin. 1993;16(3):239-43.
    117. Tateno H, et al. Isolation and characterization of rhamnose-binding lectins from eggs of steelhead trout (Oncorhynchus mykiss) homologous to low density lipoprotein receptor superfamily. The Journal of Biological Chemistry. 1998;273(30):19190-7.
    118. Terada T, et al. Structural characterization of a rhamnose-binding glycoprotein (lectin) from spanish mackerel (Scomberomorous niphonius) eggs. Biochimica et Biophysica Acta. 2007;1770(4):617-29.
    119. Watanabe Y, et al. Isolation and characterization of L-rhamnose-binding lectin, which binds to microsporidian Glugea plecoglossi, from ayu (Plecoglossus altivelis) eggs. Developmental and Comparative Immunology. 2008;32(5):487-99.
    120. Jia WZ, et al. Molecular cloning of rhamnose-binding lectin gene and its promoter region from snakehead Channa argus. Fish Physiology and Biochemistry. 2010;36(3):451-9.
    121. Tateno H, et al. Immunohistochemical localization of rhamnose-binding lectins in the steelhead trout (Oncorhynchus mykiss). Dev Comp Immunol. 2002;26(6):543-50.
    122. Ozeki Y, et al. Amino acid sequence and molecular characterization of a D-galactoside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. Biochemistry. 1991;30(9):2391-4.
    123. Gasparini F, et al. Novel rhamnose-binding lectins from the colonial ascidian Botryllus schlosseri. Developmental and Comparative Immunology. 2008;32(10):1177-91.
    124. Nitta K, et al. Regulation of globotriaosylceramide (Gb3)-mediated signal transduction by rhamnose-binding lectin. Yakugaku Zasshi. 2007;127(4):553-61.
    125. Watanabe Y, et al. The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. Developmental and Comparative Immunology. 2009;33(2):187-97.
    126. Monahan LG, et al. Rapid conversion of Pseudomonas aeruginosa to a spherical cell morphotype facilitates tolerance to carbapenems and penicillins but increases susceptibility to antimicrobial peptides. Antimicrobial Agents and Chemotherapy. 2014;58(4):1956-62.
    127. Ma L, et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens. 2009;5(3):e1000354.
    128. Pamp SJ, et al. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology. 2007;189(6):2531-9.
    129. Davey ME, et al. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology. 2003;185(3):1027-36.
    130. Van Delden C, et al. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerging Infectious Diseases Journal. 1998;4(4):551-60.
    131. Krachler AM, et al. Targeting the bacteria-host interface: Strategies in anti-adhesion therapy. Virulence. 2013;4(4):284-94.
    132. Prevention CfDCa. Antibiotic resistance threats in the united states, 2013. Centers for Disease Control and Prevention, 2013.
    133. Wagner S, et al. Novel strategies for the treatment of Pseudomonas aeruginosa infections. Journal of Medicinal Chemistry. 2016;59(13):5929-69.
    134. Askoura M, et al. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. The Libyan Journal of Medicine. 2011;6.
    135. Hauber HP, et al. Inhalation with fucose and galactose for treatment of Pseudomonas aeruginosa in cystic fibrosis patients. International Journal of Medical Sciences. 2008;5(6):371-6.
    136. Huigens RW, 3rd, et al. Inhibition of Pseudomonas aeruginosa biofilm formation with bromoageliferin analogues. Journal of the American Chemical Society. 2007;129(22):6966-7.
    137. O'Loughlin CT, et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proceedings of the National Academy of Sciences. 2013;110(44):17981-6.
    138. Pires DP, et al. Phage therapy: A step forward in the treatment of Pseudomonas aeruginosa infections. Journal of Virology. 2015;89(15):7449-56.
    139. Doss J, et al. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses. 2017;9(3).
    140. Wright A, et al. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical Otolaryngology. 2009;34(4):349-57.
    141. Torres-Barcelo C, et al. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. Plos One. 2014;9(9).
    142. SpectralDiagnostics. Annual report: Leading the battle against sepsis. Toronto, ON: SpectralDiagnostics; 2008.
    143. Hung C-H. Recognition and removal of bacterial endotoxin by recombinant horseshoe crab plasma lectin. Master Thesis-National Tsing Hua Univdresity. 2017.
    144. Poole K. Pseudomonas aeruginosa: Resistance to the max. Front Microbiol. 2011;2:65.
    145. Sadovskaya I, et al. Structural elucidation of the lipopolysaccharide core regions of the wild-type strain PAO1 and O-chain-deficient mutant strains AK1401 and AK1012 from Pseudomonas aeruginosa serotype O5. European Journal of Biochemistry. 1998;255(3):673-84.
    146. Bystrova OV, et al. Structural studies on the core and the O-polysaccharide repeating unit of Pseudomonas aeruginosa immunotype 1 lipopolysaccharide. European Journal of Biochemistry. 2002;269(8):2194-203.
    147. Bystrova OV, et al. Structures of the core oligosaccharide and O-units in the R- and SR-type lipopolysaccharides of reference strains of Pseudomonas aeruginosa O-serogroups. FEMS Immunology and Medical Microbiology. 2006;46(1):85-99.
    148. Hirt H, et al. Antimicrobial peptide gl13k is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2013;57(10):4903-10.
    149. Michaud G, et al. Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. Chemical Science. 2016;7(1):166-82.
    150. Ramritu P, et al. A systematic review comparing the relative effectiveness of antimicrobial-coated catheters in intensive care units. American Journal of Infection Control. 2008;36(2):104-17.
    151. Stevens KN, et al. Hydrophilic surface coatings with embedded biocidal silver nanoparticles and sodium heparin for central venous catheters. Biomaterials. 2011;32(5):1264-9.
    152. Wright GD. The antibiotic resistome: The nexus of chemical and genetic diversity. Nature Reviews Microbiology. 2007;5(3):175-86.
    153. Kerr KG, et al. Pseudomonas aeruginosa: A formidable and ever-present adversary. Journal of Hospital Infection. 2009;73(4):338-44.
    154. Fox JL. Antimicrobial peptides stage a comeback. Nature Biotechnology. 2013;31(5):379-82.
    155. Johnson K. Antibiotics mechanisms of action. 2011.

    QR CODE