簡易檢索 / 詳目顯示

研究生: 姚中翰
Yao, Chung-Han
論文名稱: Effects of Thin-Film Properties on Pattern Transfer Mechanism of Direct Metal Imprint
直接奈米壓印應用於金屬薄膜性質及其成型機制之研究
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 104
中文關鍵詞: 奈米直壓製程參數金屬結構晶粒大小奈米壓痕實驗
外文關鍵詞: Direct nanoimprint, Process parameters, Metallic pattern, Grain size, Nanoindenter
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this study, we experimentally investigated the effects of metallic thin-film properties on pattern formation using a direct nanoimprint process. Instead of the methods being commonly used to form nanostructures on polymers, direct nanoimprint process was used for the fabrication of subwavelength structures on aluminum thin films. We focused on determining mechanical properties such as grain size, defects, fabrication processes and substrate materials. Aluminum thin films were used as transfer materials, the grain size and microstructures of which were controlled using different deposition process and parameters. The mechanical properties of thin films were determined by nanoindentation experiments. Formation height was applied to analyze the formation qualities in the nanoimprint process and was measured by atomic force microscopy. Scanning electron microscopy and transmission electron microscopy were utilized to analyze the surface topography, grain size, microstructure, and internal defect of thin films. From the experimental results, the following phenomena were observed. With a larger line width to pitch ratio (LPR) of the mold, the formation height ratio is higher. Different pile-up mechanisms lead to transferred patterns with dual peaks or a single peak. For aluminum films of the same thickness, hardness decreases when grain size increases, a phenomenon called the Hall–Petch effect. When the grain size of the thin films increases, formation height increases because hardness decreases. For the same formation height, the imprinting force decreases with the softer substrates. In this study, the relationships between grain size, hardness and formation height for different fabrication methods and different substrates were determined. The formability of the metallic thin films was improved through suitable parameter control.


    不同於一般壓印於高分子,本文研究採用本實驗室所提出之直接壓印製程,將次波長奈米結構直接轉印至金屬薄膜。文中主要針對薄膜機械性質,包括晶粒大小、微結構缺陷、濺鍍製程與基材種類,討論對於奈米壓印成型性的影響。薄膜材料使用鋁金屬,藉由改變薄膜濺鍍製程與參數來達到改變晶粒大小與顯微結構不同,並利用奈米壓痕實驗來確認材料機械性質。原子力顯微鏡(AFM)用來量測壓印實驗後之成型高度,並以此做為判斷鋁薄膜成型品質的依據。掃描式顯微鏡(SEM)與穿透式電子顯微鏡(TEM)則用來分析薄膜材料的表面形貌、晶粒大小、顯微結構與缺陷觀察。由實驗結果可以觀察到下列現象:隨著模具的線寬節距比(LPR)越大,成型高度比也越好,同時可觀察到不同的堆積情形而呈現出單峰或雙峰現象;在相同薄膜厚度下,硬度隨著晶粒大小增大而降低,符合Hall-Petch效應。當薄膜中的晶粒增大,因硬度降低會使成型高度提高;相同成型高度下,壓印力隨著基材越軟而越小。依據本文,可得到晶粒大小、硬度、成型高度相對於不同濺鍍製程與不同基材的關係。藉由適當的控制製程參數,壓印成型高度可獲得足夠的改善。

    Abstract I Acknowledgements III Contents IV List of Tables VI List of Figures VII Notations X Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature review 2 1.2.1 Nanoimprint lithography 2 1.2.2 Fabrication of metal patterning 7 1.2.3 Factors affecting the formability of metallic thin films 14 1.2.4 Method to improve formability of metal thin film 17 1.3 Research objectives and content 19 Chapter 2 Deformation Mechanism 21 2.1 Elastic and plastic deformation 21 2.1.1 Elastic deformation 22 2.1.2 Plastic deformation 23 2.2 Dislocation and slip systems 24 2.2.1 Edge dislocations 25 2.2.2 Screw dislocations 26 2.2.3 Mixed dislocations 27 2.2.4 Sources of Dislocations 28 2.2.5 Slip systems 29 2.3 Grain rotation and grain boundary slide 32 2.4 Springback 34 2.5 Strain hardening 34 2.6 Nanoindentation 36 2.7 Substrate effect 39 2.8 Hall-Petch effect 42 2.9 Inverse Hall-Petch effect 45 Chapter 3 Experimental procedure 49 3.1 Mold fabrication 51 3.2 Aluminum thin film fabrication 52 3.2.1 Ion-beam sputtering 52 3.2.2 Direct current (DC) sputtering 53 3.2.3 Electron-beam (e-beam) evaporation 54 3.3 Indentation experiment 56 3.4 Metal Direct Imprint process 56 Chapter 4 Experimental results and discussions 59 4.1 Mold topography 60 4.2 Aluminum thin film fabricated by ion beam sputtering 69 4.3 Aluminum thin film fabricated by direct current sputtering 78 4.4 Aluminum thin film fabricated by E-beam evaporation 84 4.5 Aluminum thin film coated on different substrates 90 4.6 EDS analysis of Si mold 94 Chapter 5 Conclusions and future work 96 5.1 Conclusions 96 5.2 Future works 97 References 99

    [1] G. E. Moore, 1965, “Cramming More Components onto Integrated Circuits,” Electronics, Vol. 38.
    [2] S. Fujimori: Japan Patent JP 990140 (1974).
    [3] S. Fujimori and M. Kondo: Japan Patent JP 947244 (1975).
    [4] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, 1995, “Imprint of Sub-25 nm Vias and Trenches in Polymers,” Applied Physics Letters, Vol. 67, No. 20, pp. 3114-3116.
    [5] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaslson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, 1999, “Step and Flash Imprint Lithography: An Alternative Approach to High Resolution Patterning,” Proceedings of SPIE, Vol. 3676, pp. 379-389.
    [6] H. Tan, A. Gilbertson, and S. Y. Chou, 1998, “Roller Nanoimprint Lithography,” Journal of Vacuum Science and Technology B, Vol. 16, No. 6, pp. 3926-3928.
    [7] S. Y. Chou, C. Keimel, and J. Gu, 2002, “Ultrafast and Direct Imprint of Nanostructures in Silicon,” Nature, Vol. 417, pp. 835-837.
    [8] Y. Xia, and G. M. Whitesides, 1998, “Soft Lithography,” Annual Review of Materials Science, Vol. 28, pp. 153-184.
    [9] X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, 2002, “Reversal Imprinting by Transferring Polymer from Mold to Substrate,” Journal of Vacuum Science and Technology B, Vol. 20, pp. 2872-2876.
    [10] R. T. Perkins, D. P. Hansen, E. W. Gardner, J. M. Thorne, and A. A. Robbins, 2000, “Broaband wire grid polarizer for visible spectrum, ” U.S. Patent 6122103.
    [11] M. Xu, H. P. Urbach, D. K. G de Boer, and H. J. Cornelissen, 2005, “Wire-grid Diffraction Gratings Used as Polarizing Beam Splitter for Visible Light and Applied in Liquid Crystal on Silicon,” Optics Express, Vol. 13, No. 7, pp. 2303-2320.
    [12] A. N. Shipway, M. Lahav, and I. Willner, 2000, “Nanostructured Gold Colloid Electrodes,” Advanced Materials, Vol. 12, No. 13, pp. 993-998.
    [13] F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, 2001, “Hydrogen Sensors and Switches From Electrodeposited Palladium Mesowire Arrays,” Science, Vol. 293, No. 5538, pp. 2227-2231.
    [14] T. A. Taton, C. A. Mirkin, and R. L. Letsinger, 2000, “Scanometric DNA Array Detection with Nanoparticle Probes,” Science, Vol. 289, No. 5485, pp. 1757-1760.
    [15] E. C. Greyson, Y. Babayan and T. W. Odom, 2004, “Directed Growth of Ordered Arrays of Small-diameter ZnO Nanowires,” Advanced Materials, Vol. 16, No. 15 pp. 1348-1352.
    [16] G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner and F. R. Aussenegg, 2001, “Optical Properties of Ag and Au Nanowire Gratings,” Journal of Applied Physics, Vol. 90, No. 8, pp. 3825-3830.
    [17] J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, 2005, “Innovative High-performance Nanowire-grid Polarizers and Integrated Isolators,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1, pp. 241-252.
    [18] S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, 2005, “Fabrication of Subwavelength Aluminum Wire Grating Using Nanoimprint Lithography and Reactive Ion Etching,” Microelectronic Engineering, Vol. 78-79, No. 1-4, pp. 314-318.
    [19] S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, 2005, “Fabrication of a 50 nm Half-pitch Wire Grid Polarizer Using Nanoimprint Lithography,” Nanotechnology, Vol. 16, No. 9, pp. 1874-1877.
    [20] L. Jiao, H. Gao, G. Zhang, G. Xie, X. Zhou, Y. Zhang, Y. Zhang, B. Gao, G. Luo, Z. Wu, T. Zhu, J. Zhang, Z. Liu, S. Mu, H. Yang, and C. Gu, 2005, “Fabrication of Metallic Nanostructures by Negative Nanoimprint Lithography,” Nanotechnology, Vol. 16, No. 12, pp. 2779-2784.
    [21] Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chuo, 2000, “Reflective Polarizer Based on a Stacked Double-layer Subwavelength Metal Grating Structure Fabricated Using Nanoimprint Lithography,” Applied Physics Letters, Vol. 77, pp. 927-929.
    [22] K. W. Chien, and H. P. D. Shieh, 2004, “Design and Fabrication of an Integrated Polarized Light Guide for Liquid-crystal-display Illumination,” Applied Optics, Vol. 43, No. 9, pp. 1830-1834.
    [23] J. Tao, Y. Chen, X. Zhao, A. Malik, and Z. Cui, 2005, “Room Temperature Nanoimprint Lithography Using a Bilayer of HSQ/PMMA Resist Stack,” Microelectronic Engineering, Vol. 78-79, pp. 665-669.
    [24] S. H. Kim, J. D. Park, and K. D. Lee, 2006, “Fabrication of a Nano-wire Grid Polarizer for Brightness Enhancement in Liquid Crystal Display,” Nanotechnology, Vol. 17, pp. 4436–4438.
    [25] L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, 2007, “Large Flexible Nanowire Grid Visible Polarizer Made by Nanoimprint Lithography,” Applied Physics Letters, Vol. 90, pp. 063111-1-063111-31
    [26] C. H. Chen, and Y. C. Lee, 2007, “Contact Printing for Direct Metallic Pattern Transfer Based on Pulsed Infrared Laser Heating,” Journal of Micromechanics and Microengineering, Vol. 17, pp. 1252-1256.
    [27] C. Peng, B. L. Cardozo, and S. W. Pang, 2008, “Three-dimensional Metal Patterning over Nanostructures by Reversal Imprint,” Journal of Vacuum Science and Technology B, Vol. 26, pp. 632-635.
    [28] S. W. Pang, T. Tamamura, M. Nakao, A. Ozawa, and H. Masuda, 1998, “Direct Nano-printing on Al Substrate Using a SiC Mold,” Journal of Vacuum Science and Technology B, Vol. 16, No. 3, pp 1145-1149.
    [29] Y. Hirai, T. Ushiro, T. Kanakugi, and T. Matsuura, 2003, “Fine Gold Grating Fabrication on Glass Plate by Imprint Lithography,” Proceedings of SPIE, Vol. 5220, pp. 74-81.
    [30] K. A. Lister, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, J. M. R. Weaver, and B. G. Casey, 2004, “Direct Imprint of Sub-10 nm Features into Metal Using Diamond and SiC Stamps,” Journal of Vacuum Science and Technology B, Vol. 22, No. 6, pp 3257-3259.
    [31] H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, 2006, “Directly Patterning Metal Films by Nanoimprint Lithography with Low-temperature and Low-pressure,” Microelectronic Engineering, Vol. 83, pp. 893-896.
    [32] M. C. Cheng, H. Y. Hsiung, Y. L. Hsueh, H. Y. Chen, and C. K. Sung, 2007, “The Effect of Thin-film Thickness on the Formation of Metallic Patterns by Direct Nanoimprint Process,” Journal of Materials Processing Technology, Vol. 191, No. 1-3, pp. 326-330.
    [33] C. W. Hsieh, H. Y. Hsiung, Y. T. Lu, C. K. Sung, and W. H. Wang, 2007, “Fabrication of Subwavelength Metallic Structures by Using a Metal Direct Imprinting Process,” Journal of Physics D: Applied Physics, Vol. 40, pp. 3440-3447.
    [34] A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, 1989, “On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials,” Scripta Metallurgica, Vol. 23, pp. 1679-1684.
    [35] H. W. Sun, J. Q. Liu, D. Chen, and P. Gu, 2005, “Optimization and Experimentation of Nanoimprint Lithography Based on FIB Fabricated Stamp,” Microelectronic Engineering, Vol. 82, pp. 175-179.
    [36] 陳星佑, 2005, ”溫度與保壓時間效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗,” 國立清華大學碩士論文.
    [37] T. H. Fang, S. R. Jian, and D. S. Chuu, 2002, “Molecular Dynamics Analysis of Effects of Velocity and Loading on the Nanoindentation,” Japanese Journal of Applied Physics, Vol. 41, pp. 1328-1331.
    [38] 謝雲亮, 2005, “尺寸效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗,” 國立清華大學碩士論文.
    [39] Q. C. Hsu, C. D. Wu, and T. H. Fang, 2004, “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics,” Japanese Journal of Applied Physics, Vol. 43, No. 11A, pp. 7665-7669.
    [40] 李文福, 1992, “工程材料的本質與性質,” 國立編譯館.
    [41] S. Yip, 1998, “The Strongest Size,” Nature, Vol. 391, pp. 532-533.
    [42] R. E. Reed-Hill, and R. Abbaschian, 1994, “Physical Metallurgy Principles,” PWS-Kent.
    [43] W. D. Callister, Jr., 2006, “Materials Science and Engineering - An Introduction 7th,” John Wiley & Sons, Inc.
    [44] 陳文照、曾春風、游信和譯, 2002, “材料科學與工程導論,” 高立圖書有限公司.
    [45] H. R. Hertz, 1882, “On the Contact of Elastic Solids,” Journal fur die Reine und Angewandte Mathematik, Vol. 92, pp. 156–171.
    [46] I. N. Sneddon, 1965, “The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile,” International Journal of Engineering Science, Vol. 3, pp. 47-56.
    [47] W. C. Oliver, G. M. Pharr, 1992, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, Vol. 7, No. 6, pp. 1564-1580.
    [48] A. A. Volinsky, J. Vella, I. S. Adhihetty, V. Sarihan, L. Mercado, B. H. Yeung, 2001, “Microstructure and mechanical properties of electroplated Cu thin films, ” Materials Research Society, Vol. 67, Q5.3.1-Q5.3.6.
    [49] S. Chen, L. Liu, T. Wang, 2005, “Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations,” Surface & Coatings Technology, Vol. 191, 25-32.
    [50] W. D. Nix and H. Gao, 1998, “Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity,” Journal of the Mechanics and Physics of Solids, Vol. 46, No. 3, p. 411–425.
    [51] R. Saha, and W. D. Nix, 2002, “Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation,” Acta Materialia, Vol. 50, pp. 23-38.
    [52] F. Zhang, R. Saha, Y. Huang, W. D. Nix, K.C. Hwang, S. Qu, and M. Li, 2007, “Indentation of a Hard Film on a Soft Substrate: Strain Gradient Hardening Effects,” International Journal of Plasticity, Vol. 23, No. 1, pp. 25-43.
    [53] R. Saha, Z. Xue, Y. Huang, and W. D. Nix, 2001, “Indentation of a Soft Metal on a Hard Substrate: Strain Gradient Hardening Effects,” Journal of the Mechanics and Physics of Solids, Vol. 49, No. 9, pp. 1997-2014.
    [54] 呂盈締, 2006, “金屬直接奈米壓印之成型研究,” 國立清華大學碩士論文.
    [55] E. O. Hall, 1951, “Deformation and Ageing of Mild Steel,” Proceedings of the Physical Society B, Vol. 64, pp. 747-753.
    [56] V. Vlack, 1973, “A Textbook of Materials Technology,” Pearson Education, Inc., pp. 53.
    [57] T. G. Nieh, and J. Wadsworth, 1991, “Hall-Petch Relation in Nanocrystalline Solids,” Scripta Metallurgica et Materiala, Vol. 25, pp. 955-958.
    [58] M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. Wang, and X. Cheng, 2003, “Deformation Twinning in Nanocrystalline Aluminum,” Science, Vol. 300, pp. 1275-1277.
    [59] H. Conrad, and J. Narayan, 2000, “On the Grain Size Softening in Nanocrystalline Materials,” Scripta Mater, Vol. 42, No. 11, pp. 1025-1030.
    [60] M. Ke, S. A. Hackney, W. W. Milligan, and E.C. Aifantis, 1995, “Observation and Measurement of Grain Rotation and Plastic Strain in Nanostructured Metal Thin Films,” NanoStructured Materials, Vol. 5, No. 6, pp. 689-697.
    [61] G. Wei, J. Du, A. Rar, and J. A. Barnard, 2001, “Nanoindentation Studies of DC Sputtered Cu and Cu/Cr Thin Films,” Materials Research Society Proceedings, Vol. 672, pp. O5.7.1-O5.7.6.
    [62] C. J. Youngdahl, P. G. Sanders, J. A. Eastman, and J. R. Weertman, 1997, “Compressive Yield Strengths of Nanocrystalline Cu and Pd,” Scripta Materialia, Vol. 37, No. 6, pp. 809-813.
    [63] E. Arzt, 1998, “Size Effects in Materials Due to Microstructural and Dimensional Constrains: A Comparative Review,” Acta Materialia, Vol. 46, No. 16, pp. 5611-5626.
    [64] J. Schiotz, F. D. Di Tolla, and K. W. Jacobsen, 1998, “Softening of Nanocrystalline Metals at Very Small Grain Sizes,” Nature, Vol. 391, pp. 561-563.
    [65] J. Schiotz, and K. W. Jacobsen, 2003, “A Maximum in the Strength of Nanocrystalline Copper,” Science, Vol. 301, pp. 1357-1359.
    [66] M. A. Haque, and M. T. A Saif, 2002, “Mechanical Behavior of 30-50nm Thick Aluminum Films Under Uniaxial Tension,” Scripta Materialia, Vol. 47, pp. 863-867.
    [67] K. Kadau, T. C. Germann, P. S. Lomdahl, B. L. Holian, D. Kadau, P. Entel, M. Kreth, F. Westerhoff, and D. E. Wolf, 2004, “Molecular-Dynamics Study of Mechanical Deformation in Nano-Crystaline Aluminum,” Metallurgical and Materials Transactions A, Vol. 35A, pp. 2719-2723.
    [68] H. Conrad, and J. Narayan, 2002, “Mechanism for Grain Size Softening in Nanocrystalline Zn,” Applied Physics Letters, Vol. 81, No. 12, pp. 2241-2243.
    [69] U. Erb, 1995, “Electrodeposited Nanocrystals: Synthesis, Properties and Industrial Applications,” NanoStructured Materials, Vol. 6, pp. 533-538.
    [70] R. A. Masumura, P. M. Hazzledine, and C. S. Pande, 1998, “Yield Stress of Fine Grained Materials,” Acta Materialia, Vol. 46, No. 13, pp. 4527-4534.
    [71] H. D. Rowland, A. C. Sun, P. R. Schunk, and W. P. King, 2005, “Impact of Polymer Film Thickness and Cavity Size on Polymer Flow During Embossing: Toward Process Design Rules for Nanoimprint Lithography,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 2414-2425.
    [72] C. C. Koch and J. Narayan, 2001, “The Inverse Hall-Petch Effect - Fact or Artifact?” Materials Research Society, Vol. 634. pp. B5.1.1-B5.1.11
    [73] K. L. Chopra and I. Kaur, 1983, “Thin Film Device Applications,” Plenum Press.
    [74] T. Y. Tsui, J. Vlassak, and W. D. Nix, 1999, “Indentation Plastic Displacement Field: Part I. The Case of Soft Films on Hard Substrates,” Journal of Materials Research, Vol. 14, No. 6, pp. 2196-2203.
    [75] T. Y. Tsui, J. Vlassak, and W. D. Nix, 1999, “Indentation Plastic Displacement Field: Part II. The Case of Hard Films on Soft Substrates,” Journal of Materials Research, Vol. 14, No. 6, pp. 2204-2209.
    [76] B. Taljat and G.M. Pharr, 2004, “Development of pile-up during spherical indentation of elastic-plastic solids,” International Journal of Solids and Structures, Vol. 41, No. 14, pp. 3891-3904.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE