簡易檢索 / 詳目顯示

研究生: 徐承宏
Cheng Hung Hsu
論文名稱: 電漿輔助大面積硒化銅銦鎵硒太陽能電池
Toward Large Scale CIGS Solar Cell Panel by Novel Plasma Enhanced Selenization Process
指導教授: 闕郁倫
Yu-Lun Chueh
沈昌宏
Chang-Hong Shen
口試委員: 謝東坡
Tung-Po Hsieh
呂宗昕
Chung-Hsin Lu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 62
中文關鍵詞: 太陽能電池
外文關鍵詞: solar cell
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為因應世界能源短缺,可重複使用、乾淨的能源為下一世代考量的重點。 CIGS為第二代薄膜太陽能電池,具有高吸收係數、能源回收期短短、成本低廉及高穩定性等競爭優勢。德國ZSW已發展出效率21.7%之高效率CIGS太陽能電池,其未來應用於市場之潛力十分龐大。
    電漿用於太陽能電池上早有文獻出現,有研究指出硒粒加熱形成硒蒸氣時容易造成Sen (2<n<8)的環狀或鏈狀原子團的結構,因為這些結構較低的反應,在硒化的過程容易有硒化不完全問題,多的二次相的生成導致Voc和Jsc的下降,因此元件的轉換效率下降.在電漿中,高能的電子可以斷開硒原子間的鍵結,使其形成擁有較高反應能的單一硒原子,借此解決硒化不完全的問題,而使效率得到提升。這種效果也可以降低製程溫度,在相對較低的溫度下得到高效率可以大幅地降低製程成本,也是電漿應用在CIGS太陽能電池上最重要的利益。
    本實驗使用合金後硒化(post selenization)退火的方式製作CIGS太陽能電池。再玻璃基板上製備完前驅物後送入硒化爐硒化,然後再升溫曲線不同的步驟中加入電漿,也嘗試著改變電漿的瓦數,測試出最佳的硒化參數以達到高效率的元件。
    而電漿的低溫製程效果也被我們拿來應用在以不銹鋼為基板的軟式太陽能電池上,不鏽鋼基板中的鐵雜質容易在硒化過程中擴散進入CIGS的吸收層中形成缺陷或其他化合物,導致元件效率下降,但是低溫的製程可以抑制雜質擴散,也可以降低雜質阻隔層的厚度。
    而電漿的低溫製程效果也被我們拿來應用在以不銹鋼為基板的軟式太陽能電池上,不鏽鋼基板中的鐵雜質容易在硒化過程中擴散進入CIGS的吸收層中形成缺陷或其他化合物,導致元件效率下降,但是低溫的製程可以抑制雜質擴散,也可以降低雜質阻隔層的厚度。
    現行已開發電漿輔助製程方式製備大面積(30cm*40cm)合金後硒化CIGS太陽能電池,並且成功達到13%之效率,不鏽鋼的軟式太陽能電池(不含鈉)也可以在大面積下達到6 %之效率。此方法於工業應用上有十分龐大之潛力及前景。


    For the sake of energy shortage, renewable and clean energy substitution is a considerable point for the next generation. CIGS is the best thin film solar cell among the second generation solar cells owing to its various outstanding behaviors, such as the highest absorption coefficient, the easiest integration with Si-based technology and the highest efficiency in thin film solar cell. Therefore, it has already attracted tremendous attention in academic and industrial fields. Up to date, the highest efficiency of ~21.7% has been demonstrated by ZSW in Germany.
    Plasma application on solar cell has been researched by many groups. It has been found that Se vapor is easily formed as Sen, which is ring or train structure (2<n<8).These structures have low reactant energy, resulting in the problem of incomplete selenization. In this thesis, a progressing non-toxic plasma-enhanced solid Se vapor selenization process (PESVS) technique, compared with hydrogen-assisted Se vapor selenization (HASVS) to achieve a large-area (40x30 cm2) Cu(In,Ga)Se2 (CIGS) solar panel with enhanced efficiencies from 10.8 % to 13.2 % (14.7 % for active area), was demonstrated. The bonding of Se was partially broken by ICP plasma treatment and these Se radicals are helpful to enhance reaction activity for following selenization process at an extremely low temperature of 330 ˚C. The effects of plasma steps, plasma power, selenization temperature and optimized conditions were thoroughly studied in detail. The remarkable enhancement of the efficiency is ascribed to the better crystallinity, enlarged grain size, less Se vacancy and uniform depth distribution of Ga. From reaction kinetics point of view, PESVS provides extra energy to crack Se, resulting in the decrease in reaction activation energy. The PESVS methodology was also applied to low temperature (450 ˚C) selenized CIGS thin film solar panel with uniform conversion efficiency more than ~10 %. Furthermore, a large-area flexible stainless steel substrate with remarkable conversion efficiency of ~6.8 % without Na addition was demonstrated. We believed that this work can provide a facile approach of low temperature selenization on flexible substrate applications or fast selenization for throughput consideration, thus stimulating the mass-production in large scale CIGS PV industry.

    摘要 I Abstract III 誌謝…………………………………………………………………………………...V List of Figure…………………………………………………………………………IX List of Table…………………………………………………………………………XII Chapter 1 Introduction 1 1.1 Preface 1 1.2 Different Type of Solar Cell 2 1.3 Basic principle and characteristic of solar cell 3 1.4 CIGS solar cell introduction 8 1.4.1 History of CIGS solar cell 8 1.4.2 CIGS device structure 9 1.5 Plasma effect introduction 12 1.5.1 Plasma effect for chalcopyrite photovoltaic 12 1.5.2 Advantage of plasma-assisted 13 1.6 Flexible solar cell introduction 14 1.6.1 Development of flexible solar cell 14 1.6.2 Problems of using SS as substrate 15 Chapter 2 Experiment and Analysis Instrument 17 2.1.Fabrication instrument 17 2.1.1 In-line sputtering system 17 2.1.2 Large scale plasma-assisted selenization furnace 17 2.2 Analysis instrument 18 2.2.1 Solar cell simulator system 18 2.2.2 Scanning electron microscope, SEM 21 2.2.3 Energy dispersive spectrometers, EDS 22 2.2.4 X-ray diffraction analysis, XRD 23 2.2.5 Raman scattering analysis, Raman 24 2.2.6 Photoluminescence system, PL 25 2.2.7 Time-Resolved Photoluminescence, TRPL 27 2.2.8 Electron Spectroscopy for Chemical Analysis, ESCA 28 2.2.9 Secondary ion mass spectrometry, SIMS 28 Chapter 3 Experimental 30 3.1.CIGS Solar Cell Fabrication 30 3.1.1 Soda-lime glass cleaning 30 3.1.2 Mo electrode deposition 31 3.1.3 CIG precursor sputtering 31 3.1.4 CIGS selenization process 32 3.1.5 CdS buffer layer deposition 33 3.1.6 ZnO/ITO window layer and Al electrode fabrication 35 3.1.7 TaN blocking layer deposition 35 Chapter 4 Results and Discussions 37 4.1. Optimization of Se Vapor 37 4.2 Discussions and Analysis of Plasma Enhanced Selenium Vapor Selenization (PESVS) 38 4.2.1. Analyses of thin film microstructural property and cells performance with varied plasma-enhanced selenization processes 38 4.2.2. Analyses of thin film microstructural property and cells performance with varied plasma power 42 4.2.3. Mechanism and Material Analyses of Plasma-Enhanced Se Vapor Selenization (PESVS) 46 4.2.4. Analyses of thin film microstructural property and cells performance at low process temperature 50 4.2.5. Flexible Cu(In,Ga)Se2 Solar Panel Application 55 Chapter 5 Conclusions and Future works 57 5.1 Conclusion 57 5.2 Future Work 58 Reference. 59

    [1]Source:Internation energy agency 2010
    [2]Http://en.wikipedia.org/wiki/Solar_energy, solar energy-Wikipedia, the free encyclopedia
    [3]Https://commons.wikimedia.org/wiki/File:Solar_cell_technologies.PNG
    [4]Basic Electronics Tutorials Site by Wayne Storr. Last updated 15th July 2015,
    Copyright © 1999 − 2015, All Rights Reserved - Basic Electronics Tutorials.
    [5]Vladan Mlinar ,” Role of theory in the design of semiconducting nanostructures”, The Royal Society of Chemistry 2012
    [6]D. S. Purnomo Sidi Priambodo, Wahyudi Purnomo, Harry Sudibyo and Djoko Hartanto, Electric Energy Management and Engineering in Solar Cell System, Solar Cells - Research and Application Perspectives, 2013.
    [7]National Center for Photovoltaics, NREL,2015
    [8]Rudigier, E., et al.,“Real-time study of phase transformations in Cu–In chalcogenide thin films using in situ Raman spectroscopy and XRD”. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1954-1960
    [9] Yoon, J.-h., et al., “Optical Diagnosis of the Microstructure of Mo Back Contact for CIGS Solar Cell”. Meeting Abstracts, 2009. MA2009-02(9): p. 763
    [10] Minemoto, T., et al., “Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation”. Solar Energy Materials and Solar Cells, 2001. 67(1–4): p. 83-88.
    [11] Nakada, T., et al., “High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer”. Solar Energy Materials and Solar Cells, 2001. 67(1–4): p. 255-260.
    [12] Nakada, T. and M. Mizutani, “18% efficiency Cd-free Cu(In, Ga)Se-2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers”. Japanese Journal of Applied Physics Part 2-Letters, 2002. 41(2B): p. L165-L167.
    [13]William N. Shafarman and Lars Stolt, “CIGS Solar Cells” University of Delaware, Newark, DE, USA, Uppsala University, Uppsala, Sweden
    [14]J. Nelson, The physics of solar cells. London,England: Imperial College Press, 2003.
    [15] Cho, D.-H., et al., “Influence of growth temperature of transparent conducting oxide layer on Cu(In,Ga)Se2 thin-film solar cells”. Thin Solid Films, 2012. 520(6): p. 2115-2118
    [16] National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000
    [17] S. Kosuarju, I. Repins, C. A. Wolden, “Development of Plasma-assisted Processing for Selenization and Sulfurization of Absorber Layers”, Proceedings of the 2003 National Center for Photovoltaics Review Meeting, 2003
    [18] S. Kosaraju, C.A. Wolden, I. Repins, “Development of Plasma-assisted Processing for Selenization and Sulfurization of Absorber Layers“, Materials Research Society Symposium 763, pp. 391-396, 2003
    [19] S. Kosaraju, I.L. Repins, C.A. Wolden, “Formation of Chalcogen Plasmas and their Use in Synthesis of Photovoltaic Absorbers,” DOE Solar Energy Technologies Program Review Meeting: Government Document #DOE/GO-102005-2067, (2004).
    [20] S. Kosaraju, I.L. Repins, C. A. Wolden, “Formation of chalcogen containing plasmas and their use in the synthesis of photovoltaic absorbers,” Journal of Vacuum Science and Technology, in press, 2005.
    [21]P.Jackson, D.Hariskos, E.Lotter, S.Paetel, R.Wuerz, R.Menner, W. Wischemann M.Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin film solar cells beyond 20%, Progress in Photovoltaics”:Researchand Applications 19(2011)894–897.
    [22] D.Bremaud, D.Rudmann, M.Kaelin, K.Ernits, G.Bilger, M.Dobeli,H.Zogg, A.N. Tiwari, “Flexible Cu(In,Ga)Se2 on Al foils and the effects of Al during chemical bath deposition”, Thin Solid Films515(2007)5857–5861.
    [23]P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buecheler, et al., "Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules," IEEE Journal of Photovoltaics, vol. 3, pp. 572-580, 2013.
    [24]Tobias Eisenbarth, Raquel Caballero, Christian A. Kaufmann, Axel Eicke and Thomas Unold, “Influence of iron on Cu(In,Ga)Se2 solar cells”, Prog. Photovolt: Res. Appl. 2012; 20:568–574
    [25]Http://pvcdrom.pveducation.org/APPEND/Am0.htm
    [26]Http://pveducation.org/pvcdrom/properties-of-sunlight/air-mass
    [27] Shirakata, S. and T. Nakada, “Time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells”. Thin Solid Films, 2007. 515(15): p. 6151-6154
    [28] Marudachalam, M., et al., “Preparation of homogeneous Cu(InGa)Se-2 films by selenization of metal precursors in H2Se atmosphere”. Applied Physics Letters, 1995. 67(26): p. 3978-3980.
    [29] Baji, Z., et al., “Post-selenization of stacked precursor layers for CIGS. Vacuum’’, 2013.92: p. 44-51.
    [30] Guillén, C., M.A. Martı́nez, and J. Herrero,” Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters”. Thin Solid Films, 1998. 335(1–2): p. 37-42.
    [31]M. Marudachalam etal. “Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere”. Appl. Phys. Lett. 67, 3978 (1995).
    [32] S. N. Yannopoulos and K. S. Andrikopoulos, “Raman scattering from noncrystalline “Se J. Chem. Phys., Vol. 121, No. 10, 8 September 2004.
    [33] T. T. Wu etal., “Toward high efficiency and panel size 30*40 cm2 Cu(In,Ga)Se2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature” Nano Energy (2014) 10, 28–36
    [34] D. Abou-Ras etal., “Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells”, Thin Solid Films, 2005, 480-481, 433.
    [35] Sejin Ahn etal., “MoSe2 Formation from Selenization of Mo and Nanoparticle Derived Cu(In,Ga)Se2/Mo Films”, IEEE WCPEC (World Conference on Photovoltaic Energy Conversion), 2006, 1, 506.
    [36] L. Kronik etal., “Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance”, Adv. Mater., 1998, 10, 31 − 36.
    [37] T. T. Wu etal., “Improved Efficiency of Larger Area Cu(In,Ga)Se2 Solar Cell by Non-toxic Hydrogen-assisted Solid Se Vapor Selenization Process”, ACS Appl. Mater. Interfaces, 2014, 6, 4842 – 4849.
    [38] R. Krishnan etal., “Effect of Na-doped Mo on Selenization Pathways for CuGa/In Metallic Precursors”, 39th Photovoltaic Specialists Conference (PVSC), 2013.
    [39] S. Kosaraju etal., “Development of Plasma-assisted Processing for Selenization and Sulfurization of Absorber Layers”, Materials Research Society Symposium, 2003, 763, 391 − 396.
    [40] Tobias Eisenbarth etal. “Influence of iron on Cu(In,Ga)Se2 solar cells”, Prog. Photovolt: Res. Appl. 2012; 20:568–574 © 2012 John Wiley & Sons, Ltd
    [41] Karen Holloway etal, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions”, J. Appl. Phys. 71, 5433 (1992)
    [42] Yonezawa etal, “CHALCOPYRITE SOLAR CELL” United states patent patent number:US7,741,560 B2
    [43] D. Brémaud et al., “Flexible Cu(In,Ga)Se 2 on Al foils and the effects of Al during chemical bath deposition”, Thin Solid Films, 2007, 515, 5857 – 5861.
    [44] A. Rockett et al., “Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances”, Thin Solid Films, 2002, 372, 212 – 217.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE