簡易檢索 / 詳目顯示

研究生: 賀博群
論文名稱: 肝細胞核因子4對人類嗜酸性白血球神經毒性蛋白的表現調節之影響
Role of liver transcription factor HNF4 on regulation of human ribonuclease2
指導教授: 張大慈
Margaret Dah-Tsyr Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 68
中文關鍵詞: 人類嗜酸性白血球神經毒性蛋白人類嗜酸性白血球陽離子蛋白
外文關鍵詞: EDN, ECP
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係探討人類嗜酸性白血球神經毒性蛋白(核醣核酸水解酵素2)與人類嗜酸性白血球陽離子蛋白(核醣核酸水解酵素3)之不同生物演化功能,研究的重點為二者啟動子活性及轉錄因子的差異。人類嗜酸性白血球神經毒性蛋白與人類嗜酸性白血球陽離子蛋白為核醣核酸水解酵素家族的成員,二者的基因均位於第14號染色體長臂第2區第4條帶和長臂第3區第4條帶之間。比對其密碼區上游一千個鹼基對的啟動子序列顯示二者具92%的相似度,但主要的差異為嗜酸性白血球神經毒性蛋白啟動子-81/-48位置含有一段34個鹼基對的區域,而人類嗜酸性白血球陽離子蛋白則無;以及六個鹼基對序列差異較高的次要區域。由啟動子分析的實驗得知,在人類肝癌細胞株中將人類嗜酸性白血球神經毒性蛋白啟動子的第二個次要差異區域突變成人類嗜酸性白血球陽離子蛋白者,明顯降低人類嗜酸性白血球神經毒性蛋白之轉錄能力。膠體電泳流動轉移試驗(EMSA)以及抗體膠位移試驗(supershift assay)則發現轉錄因子中肝細胞核因子4(HNF4)會結合在人類嗜酸性白血球神經毒性蛋白的第二個次要差異區域,繼而達到調控其轉錄能力的效果。若將此區域從人類嗜酸性白血球神經毒性蛋白啟動子序列中剔除,則將造成其轉錄能力急劇下降,證明本區域對人類嗜酸性白血球神經毒性蛋白的轉錄調控扮演重要的角色。本實驗室已知轉錄因子Sp1和MAZ能與含34個鹼基對區域結合以調控人類嗜酸性白血球神經毒性蛋白的表達能力,結合本論文研究之新穎發現,具體證明HNF4、Sp1、和MAZ共同調節機制,使得人類嗜酸性白血球神經毒性蛋白與人類嗜酸性白血球陽離子蛋白之啟動子活性在肝癌細胞中顯現差異。


    Human eosinophil-derived neurotoxin (EDN, RNase2) and human eosinophil cationic protein (ECP, RNase3) belong to the ribonuclease A (RNase A) superfamily, and the duplicated edn and ecp genes are located in the q24-q31 region of chromosome 14. Multiple sequence alignment of upstream 1 kb region of human edn and ecp showed 92% identity, but a major difference was a 34-nucleotide (34-nt) element (-81/-48) only appeared in the edn promoter. However, some minor differences between edn and ecp promoters mainly located in six different regions might also be involved. In this study, luciferase reporter assay was employed to find out which minor region also plays the role to regulate the promoter activity, and a mount of decrease in edn promoter activity was detected when region 2 sequence mutated to the same with ecp. Electrophoretic mobility shift assays (EMSA) and supershift results show that the transcription factor HNF4 could bind to region 2 of edn promoter. Greatly decrease of promoter activity was detected in deletion of region 2 in edn promoter results, so this region might play important role with edn gene. In previous research, edn could be regulated by Sp1 and MAZ depending on that binding to 34nt. Combining this study, edn gene expression might be co-regulated by interaction between its promoter and transcription factors HNF4, Sp1 and MAZ.

    中文摘要 I Abstract II Table of Contents III Abbreviations VII 1. Introduction 1 2. Materials and methods 3 2.1 Microbial strains and plasmids 3 2.2 Competent cell preparation 3 2.3 Culture media 4 2.4 Polymerase chain reaction (PCR) 4 2.5 Site-directed mutagenesis 4 2.6 Restriction enzyme digestion and DNA fragment recovery 5 2.7 Ligation 5 2.8 Construction of plasmid 6 2.9 Plasmid mini-preparation and Transformation 6 2.10 In situ PCR 6 2.11 DNA Sequencing 7 2.12 DNA sequence analysis 8 2.13 Cell culture 8 2.14 Transient transfection 8 2.15 Promoter activity assay 9 2.16 Preparation of nuclear extract 9 2.17 Determination of protein concentration 10 2.18 Electrophoretic mobility shift assays (EMSA) 10 2.19 Expression of fusion protein by E. coli 11 2.20 Purification of His-tag fusion protein 11 2.21 Sodium dodecyl sulphate-Polyacrylamide gel electrophoresis 12 2.22 Western blotting 13 2.23 DNA affinity precipitation assay (DAPA) 13 2.24 Chromatin immunoprecipitation (ChIP) 14 3. Results 16 3.1 Promoter activity of human edn is higher than that of ecp with insertion of 34-nt segment 16 3.2 Six regions with minor segment variations exist in human edn and ecp promoters 16 3.3 Replacement of region 2 segment of edn with that of ecp decreases promoter activity 16 3.4 Region 2 segment in edn promoter is crucial for transcriptional regulation 17 3.5 Transcription factors are associated with the region 2 segments of edn and ecp promoters 18 3.6 ConSite predicts transcription factor binding sites in ednR2 and ecpR2 segments 19 3.7 PROMO predicts transcription factor binding sites in ednR2 and ecpR2 segments 19 3.8 Potential transcription factor(s) bound to ednR2 are identified by EMSA 20 3.9 COUP-TF, HNF-4 and LEF-1 may bind to ednR2 20 3.10 Supershift assay demonstrates specific binding between HNF4 and ednR2 21 3.11 HNF4 binding site is located at -342/-335 in edn promoter 21 3.12 Recombinant and dominant negative HNF4 are expressed in E. coli 22 3.13 Recombinant HNF4 binds to ednR2 23 3.14 HNF4 is associated with edn promoter in vivo 23 3.15 HNF4 regulates edn promoter activity in vivo 23 3.16 HNF-4 interacts with Sp1 in vivo 24 3.17 HNF4 binding to the ednR2 is associated with Sp1 24 4. Discussion 26 5. References 30 Table 1 Primer sequences for site-directed mutagenesis 36 Table 2 Oligonucleotide sequences for EMSA screening 37 Table 3 HNF4 cloning primers 38 Table 4 ChIP primers 38 Table 5 Variable regions 1 to 6 in edn and ecp promoters 38 Figure 1 Promoter activity of edn and ecp 39 Figure 2 Alignment of edn and ecp promoters by ClustalW 40 Figure 3 Transcription activity of wild type and mutant edn promoters in HepG2 41 Figure 4 Transcription activity of wild type and mutant ecp promoters in HepG2 42 Figure 5 The role of region 2 in edn promoter 43 Figure 6 Transcription factors binding with ednR2 and ecpR2 44 Figure 7 Putative transcription factor binding sites in region 2 segment of edn and ecp promoters predicted by ConSite 45 Figure 8 Putative transcription factor binding sites in region 2 segments of edn and ecp promoters predicted by PROMO 46 Figure 9 Scanning of transcription elements in ednR2 by EMSA 47 Figure 10 Specific binding between ednR2 and transcription factors 48 Figure 11 Identification of HNF4 in the ednR2-containing complex 49 Figure 12 Localization of HNF4 binding site in edn promoter by EMSA mutagenesis scanning 50 Figure 13 Purification of HNF4 fusion proteins 51 Figure 14 Identification of recombinant wild type and mutant HNF4 52 Figure 15 Characterization of specific HNF4 binding to ednR2 53 Figure 16 In vivo binding of HNF4 to edn promoter 54 Figure 17 Repression of edn promoter activity by HNF4 55 Figure 18 Co-immunoprecipitation of HNF4 and Sp1 from HepG2 cell lysates 56 Figure 19 Interaction of HNF4 bound to ednR2 with Sp1 57 Figure 20 Alignment of region 2 segments in primate edn and ecp promoters 58 Figure 21 Schematic representation of the binding of transcription factors to edn and ecp promoter 59

    1. Sorrentino S, Libonati M: Structure-function relationships in human ribonucleases: main distinctive features of the major RNase types. FEBS Lett 1997, 404(1):1-5.
    2. Nitto T, Lin C, Dyer KD, Wagner RA, Rosenberg HF: Characterization of a ribonuclease gene and encoded protein from the reptile, Iguana iguana. Gene 2005, 352:36-44.
    3. Cho S, Beintema JJ, Zhang J: The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 2005, 85(2):208-220.
    4. Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, Fu Q, Tchernev VT, Wang M, Schweitzer B et al: Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 2004, 173(10):6134-6142.
    5. Zhang J, Dyer KD, Rosenberg HF: Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res 2003, 31(2):602-607.
    6. Kroegel C, Warner JA, Virchow JC, Jr., Matthys H: Pulmonary immune cells in health and disease: the eosinophil leucocyte (Part II). Eur Respir J 1994, 7(4):743-760.
    7. Dyer KD, Rosenberg HF: The RNase a superfamily: generation of diversity and innate host defense. Mol Divers 2006, 10(4):585-597.
    8. Baltus B, Buitenhuis M, van Dijk TB, Vinson C, Raaijmakers JA, Lammers JW, Koenderman L, de Groot RP: C/EBP regulates the promoter of the eosinophil-derived neurotoxin/RNS2 gene in human eosinophilic cells. Journal of leukocyte biology 1999, 66(4):683-688.
    9. Nakajima M, Hirakata M, Nittoh T, Ishihara K, Ohuchi K: Expression and purification of recombinant rat eosinophil-associated ribonucleases, homologues of human eosinophil cationic protein and eosinophil-derived neurotoxin, and their characterization. Int Arch Allergy Immunol 2001, 125(3):241-249.
    10. Hamann KJ, Ten RM, Loegering DA, Jenkins RB, Heise MT, Schad CR, Pease LR, Gleich GJ, Barker RL: Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics 1990, 7(4):535-546.
    11. Lee YS, Chen CH, Chao A, Chen ES, Wei ML, Chen LK, Yang KD, Lin MC, Wang YH, Liu JW et al: Molecular signature of clinical severity in recovering patients with severe acute respiratory syndrome coronavirus (SARS-CoV). BMC Genomics 2005, 6:132.
    12. Morgan RK, Costello RW, Durcan N, Kingham PJ, Gleich GJ, McLean WG, Walsh MT: Diverse effects of eosinophil cationic granule proteins on IMR-32 nerve cell signaling and survival. Am J Respir Cell Mol Biol 2005, 33(2):169-177.
    13. Airla N, Luomala M, Elovaara I, Kettunen E, Knuutila S, Lehtimaki T: Suppression of immune system genes by methylprednisolone in exacerbations of multiple sclerosis. Preliminary results. J Neurol 2004, 251(10):1215-1219.
    14. Bovin LF, Rieneck K, Workman C, Nielsen H, Sorensen SF, Skjodt H, Florescu A, Brunak S, Bendtzen K: Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor. Immunol Lett 2004, 93(2-3):217-226.
    15. McDevitt AL, Deming MS, Rosenberg HF, Dyer KD: Gene structure and enzymatic activity of mouse eosinophil-associated ribonuclease 2. Gene 2001, 267(1):23-30.
    16. Newton DL, Rybak SM: Unique recombinant human ribonuclease and inhibition of Kaposi's sarcoma cell growth. J Natl Cancer Inst 1998, 90(23):1787-1791.
    17. Futami J, Tsushima Y, Murato Y, Tada H, Sasaki J, Seno M, Yamada H: Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol 1997, 16(4):413-419.
    18. Nittoh T, Hirakata M, Mue S, Ohuchi K: Identification of cDNA encoding rat eosinophil cationic protein/eosinophil-associated ribonuclease. Biochim Biophys Acta 1997, 1351(1-2):42-46.
    19. Chang HT: Expression, purification, and functoinal analysis of human eosinophil cationic protein and eosinophil-derived neurotoxin. Master thesis 2000.
    20. Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ: Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A 1986, 83(10):3146-3150.
    21. Rosenberg HF, Ackerman SJ, Tenen DG: Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med 1989, 170(1):163-176.
    22. Sorrentino S, Tucker GK, Glitz DG: Purification and characterization of a ribonuclease from human liver. J Biol Chem 1988, 263(31):16125-16131.
    23. Yasuda T, Mizuta K, Sato W, Kishi K: Purification and characterization of a ribonuclease from human spleen. Immunological and enzymological comparison with nonsecretory ribonuclease from human urine. Eur J Biochem 1990, 191(2):523-529.
    24. Mizuta K, Awazu S, Yasuda T, Kishi K: Purification and characterization of three ribonucleases from human kidney: comparison with urine ribonucleases. Arch Biochem Biophys 1990, 281(1):144-151.
    25. Beintema JJ, Hofsteenge J, Iwama M, Morita T, Ohgi K, Irie M, Sugiyama RH, Schieven GL, Dekker CA, Glitz DG: Amino acid sequence of the nonsecretory ribonuclease of human urine. Biochemistry 1988, 27(12):4530-4538.
    26. Jun TY, Lee KU, Pae CU, Chae JH, Bahk WM, Kim KS, Han H: Polymorphisms of interleukin-4 promoter and receptor gene for schizophrenia in the Korean population. Psychiatry Clin Neurosci 2003, 57(3):283-288.
    27. Jun TY, Pae CU, Kim KS, Han H, Serretti A: Interleukin-10 gene promoter polymorphism is not associated with schizophrenia in the Korean population. Psychiatry Clin Neurosci 2003, 57(2):153-159.
    28. Hamann KJ, Barker RL, Ten RM, Gleich GJ: The molecular biology of eosinophil granule proteins. Int Arch Allergy Appl Immunol 1991, 94(1-4):202-209.
    29. Handen JS, Rosenberg HF: Intronic enhancer activity of the eosinophil-derived neurotoxin (RNS2) and eosinophil cationic protein (RNS3) genes is mediated by an NFAT-1 consensus binding sequence. J Biol Chem 1997, 272(3):1665-1669.
    30. van Dijk TB, Caldenhoven E, Raaijmakers JA, Lammers JW, Koenderman L, de Groot RP: The role of transcription factor PU.1 in the activity of the intronic enhancer of the eosinophil-derived neurotoxin (RNS2) gene. Blood 1998, 91(6):2126-2132.
    31. Wang HY, Chang HT, Pai TW, Wu CI, Lee YH, Chang YH, Tai HL, Tang CY, Chou WY, Chang MD-T: Transcriptional Regulation of Human Eosinophil RNases by an Evolutionary-Conserved Sequence Motif in Primate Genome. BMC Molecular Biology 2007, in press.
    32. Banerjee C, Hiebert SW, Stein JL, Lian JB, Stein GS: An AML-1 consensus sequence binds an osteoblast-specific complex and transcriptionally activates the osteocalcin gene. Proceedings of the National Academy of Sciences of the United States of America 1996, 93(10):4968-4973.
    33. Wu J, Metz C, Xu X, Abe R, Gibson AW, Edberg JC, Cooke J, Xie F, Cooper GS, Kimberly RP: A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol 2003, 170(1):132-138.
    34. Lin HB, Jurk M, Gulick T, Cooper GM: Identification of COUP-TF as a transcriptional repressor of the c-mos proto-oncogene. The Journal of biological chemistry 1999, 274(51):36796-36800.
    35. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(10):5522-5527.
    36. Harley VR, Layfield S, Mitchell CL, Forwood JK, John AP, Briggs LJ, McDowall SG, Jans DA: Defective importin beta recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutations. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(12):7045-7050.
    37. van Beest M, Dooijes D, van De Wetering M, Kjaerulff S, Bonvin A, Nielsen O, Clevers H: Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs. The Journal of biological chemistry 2000, 275(35):27266-27273.
    38. Clauss IM, Chu M, Zhao JL, Glimcher LH: The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core. Nucleic acids research 1996, 24(10):1855-1864.
    39. Kusk P, John S, Fragoso G, Michelotti J, Hager GL: Characterization of an NF-1/CTF family member as a functional activator of the mouse mammary tumor virus long terminal repeat 5' enhancer. The Journal of biological chemistry 1996, 271(49):31269-31276.
    40. Zhang J, Rosenberg HF: Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates. Proceedings of the National Academy of Sciences of the United States of America 2002, 99(8):5486-5491.
    41. Sladek FM, Zhong WM, Lai E, Darnell JE, Jr.: Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes & development 1990, 4(12B):2353-2365.
    42. Hertz R, Magenheim J, Berman I, Bar-Tana J: Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4alpha. Nature 1998, 392(6675):512-516.
    43. Watt AJ, Garrison WD, Duncan SA: HNF4: a central regulator of hepatocyte differentiation and function. Hepatology (Baltimore, Md 2003, 37(6):1249-1253.
    44. Bartoov-Shifman R, Hertz R, Wang H, Wollheim CB, Bar-Tana J, Walker MD: Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4 alpha. The Journal of biological chemistry 2002, 277(29):25914-25919.
    45. Harish S, Khanam T, Mani S, Rangarajan P: Transcriptional activation by hepatocyte nuclear factor-4 in a cell-free system derived from rat liver nuclei. Nucleic acids research 2001, 29(5):1047-1053.
    46. Stanulovic VS, Kyrmizi I, Kruithof-de Julio M, Hoogenkamp M, Vermeulen JL, Ruijter JM, Talianidis I, Hakvoort TB, Lamers WH: Hepatic HNF4alpha deficiency induces periportal expression of glutamine synthetase and other pericentral enzymes. Hepatology (Baltimore, Md 2007, 45(2):433-444.
    47. Iyemere VP, Davies NH, Brownlee GG: The activation function 2 domain of hepatic nuclear factor 4 is regulated by a short C-terminal proline-rich repressor domain. Nucleic acids research 1998, 26(9):2098-2104.
    48. Kardassis D, Falvey E, Tsantili P, Hadzopoulou-Cladaras M, Zannis V: Direct physical interactions between HNF-4 and Sp1 mediate synergistic transactivation of the apolipoprotein CIII promoter. Biochemistry 2002, 41(4):1217-1228.
    49. Takahashi S, Matsuura N, Kurokawa T, Takahashi Y, Miura T: Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line. The Biochemical journal 2002, 367(Pt 3):641-652.
    50. Janne M, Hammond GL: Hepatocyte nuclear factor-4 controls transcription from a TATA-less human sex hormone-binding globulin gene promoter. The Journal of biological chemistry 1998, 273(51):34105-34114.
    51. Stroup D, Chiang JY: HNF4 and COUP-TFII interact to modulate transcription of the cholesterol 7alpha-hydroxylase gene (CYP7A1). Journal of lipid research 2000, 41(1):1-11.
    52. Yu X, Mertz JE: Distinct modes of regulation of transcription of hepatitis B virus by the nuclear receptors HNF4alpha and COUP-TF1. Journal of virology 2003, 77(4):2489-2499.
    53. Oosterwegel M, van de Wetering M, Timmerman J, Kruisbeek A, Destree O, Meijlink F, Clevers H: Differential expression of the HMG box factors TCF-1 and LEF-1 during murine embryogenesis. Development (Cambridge, England) 1993, 118(2):439-448.
    54. Travis A, Amsterdam A, Belanger C, Grosschedl R: LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes & development 1991, 5(5):880-894.
    55. van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R: Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes & development 1994, 8(22):2691-2703.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE