簡易檢索 / 詳目顯示

研究生: 林君潔
Lin, Chun-Chieh
論文名稱: 水溶液下合成具有可調控粒徑大小的硒化鉛奈米粒子
Synthesis of PbSe Nanocubes with Tunable Sizes in Aqueous Solution
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 徐雍鎣
Hsu, Yung-Jung
呂明諺
Lu, Ming-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 31
中文關鍵詞: 硒化鉛水溶液下可調控粒徑大小的硒化鉛奈米粒子
外文關鍵詞: PbSe, Aqueous Solution, Nanocubes
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文研究中,我們是第一位在水相下成功利用Na2SeSO3作為硒的前驅物,在溶液中依序加入硝酸、硒代硫酸鈉、醋酸鉛而溴化十六烷基三甲基銨鹽當保護劑,藉由改變硝酸、Na2SeSO3與醋酸鉛之間的莫爾比例,調控反應速率,我們成功地在水相下合成138到431奈米的硒化鉛立方體,藉由粉末X光繞射鑑定、穿透式電子顯微鏡電子繞射鑑定與掃描式電子顯微鏡影像拍攝可以了解硒化鉛立方體的成分與表面特性。


      In this work, we are the first one to utilize Na2SeSO3 as the Se precursor. By mixing aqueous HNO3, Na2SeSO3, and Pb(OAc)2 solutions, and changing their molar ratios, we have succeeded in PbSe cubes with tunable edge lengths varying from 138 nm to 431 nm. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy(EDX), scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) patterns have been employed to characterize surface composition of the PbSe nanocubes.

    摘 要 I Abstract II Table of Contents III List of Schemes VIII Chapter1 1 1.1 Introduction 1 1.2 Motivation for This Thesis Research 8 2 Experiment, results and discussion 10 2.1 Reagents 10 2.2 Instrumentation 10 2.3 Selenium sources selection 10 2.4  Na2SeSO3 solution preparation 12 2.5 Insight from equations of reagent introduction 13 2.6 One-pot synthesis of PbSe cubes 14 2.6.1 Synthesis of PbSe cubes with tunable sizes 14 2.6  Characterizations 16 2.6.1 Electron microscopy 16 2.6.2 Element analysis by EDS 18 2.6.3 Powder X-ray diffraction 19 2.7 Scaling up the production 20 2.8 Results and discussion 21 3 Conclusion 29 4 References 30

    1. Cho, K.-S.; Talapin, D. V.; Gaschler, W.; Murray, C. B., J. Am. Chem. Soc. 2005, 127 (19), 7140-7147.
    2. Pietryga, J. M.; Schaller, R. D.; Werder, D.; Stewart, M. H.; Klimov, V. I.; Hollingsworth, J. A., J. Am. Chem. Soc. 2004, 126 (38), 11752-11753.
    3. Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H.-Y.; Gao, J.; Nozik, A. J.; Beard, M. C., Science 2011, 334 (6062), 1530-1533.
    4. Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J., Nano Lett. 2008, 8 (10), 3488-3492.
    5. Luther, J. M.; Gao, J.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J., Adv. Mater. 2010, 22 (33), 3704-3707.
    6. Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H., ACS nano 2008, 2 (5), 833-840.
    7. McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J.; Levina, L.; Sargent, E. H., Nature materials 2005, 4 (2), 138.
    8. Barkhouse, D. A. R.; Pattantyus-Abraham, A. G.; Levina, L.; Sargent, E. H., ACS nano 2008, 2 (11), 2356-2362.
    9. Anthony, S. P.; Cho, W. J.; Lee, J. I.; Kim, J. K., J. Mater. Chem. 2009, 19 (2), 280-285.
    10. Steckel, J. S.; Coe‐Sullivan, S.; Bulović, V.; Bawendi, M. G., Adv. Mater. 2003, 15 (21), 1862-1866.
    11. Gottapu, S.; Muralidharan, K., New J. Chem. 2016, 40 (1), 832-837.
    12. Woo, J. Y.; Lee, S.; Lee, S.; Kim, W. D.; Lee, K.; Kim, K.; An, H. J.; Lee, D. C.; Jeong, S., J. Am. Chem. Soc. 2016, 138 (3), 876-883.
    13. Yanover, D.; Čapek, R. K.; Rubin-Brusilovski, A.; Vaxenburg, R.; Grumbach, N.; Maikov, G. I.; Solomeshch, O.; Sashchiuk, A.; Lifshitz, E., Chem. Mater. 2012, 24 (22), 4417-4423.
    14. Garcia-Gutierrez, D. I.; De Leon-Covian, L. M.; Garcia-Gutierrez, D. F.; Treviño-Gonzalez, M.; Garza-Navarro, M.; Sepulveda-Guzman, S., J. Nanopart. Res. 2013, 15 (5), 1620.
    15. Houtepen, A. J.; Koole, R.; Vanmaekelbergh, D.; Meeldijk, J.; Hickey, S. G., J. Am. Chem. Soc. 2006, 128 (21), 6792-6793.
    16. Lifshitz, E.; Bashouti, M.; Kloper, V.; Kigel, A.; Eisen, M.; Berger, S., Nano Lett. 2003, 3 (6), 857-862.
    17. Bakshi, M. S.; Thakur, P.; Khullar, P.; Kaur, G.; Banipal, T. S., Crystal Growth & Design 2010, 10 (4), 1813-1822.
    18. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H., Nano Lett. 2015, 15 (3), 2155-2160.
    19. Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H., J. Am. Chem. Soc. 2010, 133 (4), 1052-1057.
    20. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H., J. Am. Chem. Soc. 2011, 134 (2), 1261-1267.
    21. Huang, M. H.; Rej, S.; Hsu, S.-C., Chem. Commun. 2014, 50 (14), 1634-1644.
    22. Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H., Nanoscale 2014, 6 (8), 4316-4324.
    23. Hsu, S. C.; Liu, S. Y.; Wang, H. J.; Huang, M. H., Small 2015, 11 (2), 195-201.
    24. Huang, M. H.; Rej, S.; Chiu, C. Y., Small 2015, 11 (23), 2716-2726.
    25. Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H., Nanoscale 2015, 7 (25), 11135-11141.
    26. Chanda, K.; Rej, S.; Huang, M. H., Chemistry-A European Journal 2013, 19 (47), 16036-16043.
    27. Chanda, K.; Rej, S.; Huang, M. H., Nanoscale 2013, 5 (24), 12494-12501.
    28. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H., Chem. Mater. 2016, 28 (5), 1574-1580.

    QR CODE