研究生: |
蘇布 Thoka, Subashchandrabose |
---|---|
論文名稱: |
利用有時間及位置解析能力的小角度X光散射法進行超晶格形成過程的量測並在水溶液中製備銅立方體及超小氧化亞銅奈米立方體和八面體以進行催化反應和光學量測 Supercrystal Formation Process Probed by Small-Angle X-Ray Scattering and Aqueous Phase Synthesis of Cu Cubes and Ultrasmall Cu2O Nanocubes and Octahedra for Catalysis and Optical Characterization |
指導教授: |
黃暄益
Huang, Hsuan-Yi Michael |
口試委員: |
林彥谷
Lin, Yan-Gu 陳軍華 Chen, Chun-Hua 鄭有舜 Jeng, U-Ser 呂明諺 Lu, Ming-Yen |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 帶圖 、金 、超晶體 、超晶格 、界面活性劑介導的 、小角度X光散射 、銅 、異相催化 、硼氫化作用 、奈米立方體 、奈米線 、氧化亞銅 、超小 、奈米八面體 、光學特性 、晶面相關 、大小相關 |
外文關鍵詞: | band diagram, Gold, Supercrystals, Superlattice, surfactant mediated, Small-angle X-ray scattering, copper, heterogeneous catalysis, hydroboration, nanocubes, nanowires, Cuprous oxide, ultra-small, nanooctahedra, optical characterization, facet-dependent, size-dependent |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在第一章中,我們藉由表面活性劑擴散法合成金超晶體,同時以小角度/廣角X射線散射與掃描電子顯微鏡確認其成核及生長過程。結果顯示出超晶體的成核作用在具高濃度表面活性劑的金奈米晶液滴頂部形成,此一現象可在垂直向的毛細管中被觀察到。在液體-液體的界面中由於表面活性劑的濃度呈現陡峭梯度,可以瞬間觀察到超晶體的晶核是由數十個金奈米立方體所構成,顯露出了擴散動力學可以控制成核的過程。晶核會沉積在奈米晶體區的下方,並且在100分鐘內有效生長成約1釐米大小的立方體或是四方超晶體。在毛細管內超晶體的完成是由奈米晶體在液滴底部之液體與空氣的界面上大量聚集且以面對面的方式排列沉積而成。超晶體呈現高等向層狀堆疊,包含了大量金奈米立方體排列成高度一致性的晶系方向。
在第二章中,以十六烷基三甲基氯化銨為表面活性劑,醋酸銅以及還原劑抗壞血酸鈉在100 ºC下反應40分鐘合成粒徑82、95以及108奈米的銅奈米立方體。在此一系統中,也可藉由微調抗壞血酸鈉的量來合成平均長度為25微米的銅奈米線。從粒徑的可調整性可以觀察到表面共振電漿吸收峰的微小偏移。銅奈米立方體被用來催化苯乙炔以及其各種炔類化合物的硼氫化反應,此系統具有100%的(E)產物選擇性以及82~95%的產率。銅奈米立方體的優點在於製造成本較低並有機會用於催化許多的有機反應。
在第三章中,以十二烷基硫酸鈉為表面活性劑、硫酸銅、氫氧化鈉以及抗壞血酸鈉還原劑,可在室溫下合成出平均粒徑介於16到200奈米的15個不同尺寸的氧化亞銅奈米立方體以及平均粒徑為34、41和49奈米的八面體。本方法具有大量合成尺寸均勻以及形狀一致的優點,八面體的尺寸為目前最小的紀錄,這些氧化亞銅奈米立方體以及八面體的吸收以及放光光譜顯示出隨著粒徑增加其吸收以及放光位置呈現紅位移的現象。這些粒子各自具有相同的體積,立方體顯示出比八面體具有較多的吸收以及放光的紅位移現象,這證明了晶面效應存在於光學特性中。加入胺硼烷可將超小的氧化亞銅奈米晶體轉變成形狀相同的銅奈米晶體。我們也證明了藉由改變銅前驅物的用量可以改變氧化亞銅的形狀由立方體轉成八面體。
In Chapter 1, the nucleation and growth process of gold supercrystals in a surfactant diffusion approach is followed by simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS), supplemented with scanning electron microscopy. The results indicate that supercrystal nucleation can be initiated upon placing a concentrated surfactant solution on top of a gold nanocrystal solution droplet, trapped in the middle of a vertically oriented capillary tube. Supercrystal nuclei comprised of tens of gold nanocubes are observed nearly instantaneously in the broadened liquid-liquid interface zone of a steep gradient of surfactant concentration, revealing a diffusion-kinetics controlled nucleation process. Once formed, the nuclei can sediment into the lower nanocrystal zone, and grow into cubic or tetragonal supercrystals of ~1 mm size within 100 min. Supercrystals eventually accumulate and face-to-face align at the bottom liquid-air interface of the nanocrystal droplet. This is followed by superpacking of the interface-oriented supercrystals into highly oriented hierarchical sheets with coherent crystallographic orientations.
In Chapter 2, copper nanocubes with average sizes of 82, 95, and 108 nm have been synthesized in an aqueous mixture of cetyltrimethylammonium chloride (CTAC) surfactant, copper acetate, and sodium ascorbate reductant heated at 100 ºC for 40 min. Copper nanowires with an average length of 25 µm can also be prepared this way by simply increasing the volume of sodium ascorbate introduced. Small shifts in the plasmonic absorption band positions with tunable particle sizes have been observed. The copper nanocubes were employed to catalyze hydroboration of phenylacetylene and various substituted aryl alkynes with 100% (E)-product selectivity and 82‒95% product yields. The copper nanocubes are cheap to make and should catalyze a broad scope of organic coupling reactions.
In Chapter 3, ultra-small Cu2O nanocubes with 15 sizes between 16 and 200 nm and octahedra with average sizes of 34, 41 and 49 nm have been synthesized in an aqueous mixture of sodium dodecyl sulfate (SDS) surfactant, copper sulphate, sodium hydroxide and sodium ascorbate reductant at room temperature. This approach is highly scalable to large quantities but still yielding uniform size and shape. The octahedral crystals represent the smallest such particles ever reported. Their absorption and emission bands shift steadily to longer wavelengths with increasing particle sizes. For particles having the same volume, cubes show more red-shifted absorption and emission than octahedra indicating the presence of facet effects in optical properties. These ultrasmall Cu2O nanocrystals can be pseudomorphically converted to Cu nanocrystals by using ammonia borane. The shape evolution of Cu2O crystals from cube to octahedra by tuning the copper precursor amount has been demonstrated.
Chapter I references:
1. Zheng, Y.; Soeriyadi, A. H.; Rosa, L.; Ng, S. H.; Bach, U.; Gooding, J. Reversible Gating of Smart Plasmonic Molecular Traps Using Thermoresponsive Polymers for Single-Molecule Detection. Nat. Commun. 2015, 6, 8797-8005.
2. Howes, P. D.; Chandrawati, R.; Stevens, M. M. Colloidal Nanoparticles as Advanced Biological Sensors. Science 2014, 346, 1247390.
3. Li, J.; Wang, Y.; Zhou, T.; Zhang, H.; Sun, X.; Tang, J.; Zhang, L.; Al-Enizi, A. M.; Yang, Z.; Zheng, G. Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting. J. Am. Chem. Soc. 2015, 137, 14305-14312.
4. Kuo, C.-H.; Li, W.; Pahalagedara, L.; El-Sawy, A. M.; Kriz, D.; Genz, N.; Guild, C.; Ressler, T.; Suib, S. L.; He, J. Understanding the Role of Gold Nanoparticles in Enhancing the Catalytic Activity of Manganese Oxides in Water Oxidation Reactions. Angew. Chem. 2015, 127, 2375-2380.
5. Stolle, C. J.; Harvey, T. B.; Korgel, B. A. Nanocrystal Photovoltaics: a Review of Recent Progress. Curr. Opin. Chem. Eng. 2013, 2, 160-167.
6. Doane, T. L.; Burda, C. The Unique Role of Nanoparticles in Nanomedicine: Imaging, Drug delivery and Therapy. Chem. Soc. Rev. 2012, 41, 2885-2911.
7. Mieszawska, A. J.; Mulder, W. J. M.; Fayad, Z. A.; Cormode, D. P. Multifunctional Gold Nanoparticles for Diagnosis and Therapy of Disease. Mol. Pharmacol. 2013, 10, 831-847.
8. Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir 2010, 26, 12307-12313.
9. Huang, M. H.; Thoka, S. Formation of supercrystals through Self-Assembly of Polyhedral Nanocrystals. Nano Today 2015, 10, 81-92.
10. Yang, C.-W.; Chiu, C.-Y.; Huang, M. H. Formation of Free-Standing Supercrystals from the Assembly of Polyhedral Gold Nanocrystals by Surfactant Diffusion in the Solution. Chem. Mater. 2014, 26, 4882-4888.
11. Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. Self-Assembly of Uniform Polyhedral Silver Nanocrystals into Densest Packings and Exotic Superlattices. Nat. Mater. 2012, 11, 131-137.
12. Tkachenko, A. V. Generic Phase Diagram of Binary Superlattices. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 10269-10274.
13. Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X.; Chen, J.; Murray, C. B. Quasicrystalline Order in Self-Assembled Binary Nanoparticle Superlattices. Nature 2009, 461, 964-967.
14. Tan, R.; Zhu, H.; Cao, C.; Chen, O. Multi-Component Superstructures Self-Assembled from Nanocrystal Building Blocks. Nanoscale 2016, 8, 9944-9961.
15. Quan, Z.; Xu, H.; Wang, C.; Wen, X.; Wang, Y.; Zhu, J.; Li, R.; Sheehan, C. J.; Wang, Z.; Smilgies, D.-M.; Luo, Z.; Fang, J. Solvent-Mediated Self-Assembly of Nanocube Superlattices. J. Am. Chem. Soc. 2014, 136, 1352-1359.
16. Choi, J. J.; Bealing, C. R.; Bian, K.; Hughes, K. J.; Zhang, W.; Smilgies, D.-M.; Hennig, R. G.; Engstrom, J. R.; Hanrath, T. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage. J. Am. Chem. Soc. 2011, 133, 3131-3138.
17. Dong, A.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary Nanocrystal Superlattice Membranes Self-Assembled at the Liquid-Air Interface. Nature 2010, 466, 474-477.
18. Bigioni, T. P.; Lin, X.-M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Kinetically Driven Self-Assembly of Highly Ordered Nanoparticle Monolayers. Nat. Mater. 2006, 5, 265-270.
19. Weidman, M. C.; Smilgies, D.-M.; Tisdale, W. A. Kinetics of the Self-Assembly of Nanocrystal Superlattices Measured by Real-Time in situ X-Ray Scattering. Nat. Mater. 2016, 15, 775−781.
20. Wang, C.; Siu, C.; Zhang, J.; Fang, J. Understanding the Forces Acting in Self-Assembly and the Implications for Constructing Three-Dimensional (3D) Supercrystals. Nano Res. 2015, 8, 2445-2466.
21. Goodfellow, B. W.; Rasch, M. R.; Hessel, C. M.; Patel, R. N.; Smilgies, D.-M.; Korgel, B. A. Ordered Structure Rearrangements in Heated Gold Nanocrystal Superlattices. Nano Lett. 2013, 13, 5710-5714.
22. Karas, A. S.; Glaser, J.; Glotzer, S. C. Using Depletion to Control Colloidal Crystal Assemblies of Hard Cuboctahedra. Soft Matter 2016, 12, 5199-5204.
23. Lu, F.; Yager, K. G.; Zhang, Y.; Xin, H.; Gang, O. Superlattices Assembled through Shape-Induced Directional Binding. Nat. Commun. 2015, 6, 6912-6921.
24. Li, R.; Bian, K.; Hanrath, T.; Bassett, W. A.; Wang, Z. Decoding the Superlattice and Interface Structure of Truncate PbS Nanocrystal-Assembled Supercrystal and Associated Interaction Forces. J. Am. Chem. Soc. 2014, 136, 12047-12055.
25. Young, K. L.; Personick, M. L.; Engel, M.; Damasceno, P. F.; Barnaby, S. N.; Bleher, R.; Li, T.; Glotzer, S. C.; Lee, B.; Mirkin, C. A. A Directional Entropic Force Approach to Assemble Anisotropic Nanoparticles into Superlattices. Angew. Chem. Int. Ed. 2013, 52, 13980-13984.
26. Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The Role of Interparticle and External Forces in Nanoparticle Assembly. Nat. Mater. 2008, 7, 527-538.
27. Singh, A.; Ryan, K. M. Crystallization of Semiconductor Nanorods into Perfectly Faceted Hexagonal Superstructures. Part. Part. Syst. Char. 2013, 30, 624-629.
28. Bai, F.; Wang, D.; Huo, Z.; Chen, W.; Liu, L.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. A Versatile Bottom-up Assembly Approach to Colloidal Spheres from Nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 6650-6653.
29. Chandler, D. Interfaces and the Driving Force of Hydrophobic Assembly. Nature 2005, 437, 640-647.
30. Chiu, C.-Y.; Chen, C.-K.; Chang, C.-W.; Jeng, U.; Tan, C.-S.; Yang, C.-W.; Chen, L.-J.; Yen, T.-J.; Huang, M. H. Surfactant-Directed Fabrication of Supercrystals from the Assembly of Polyhedral Au–Pd Core–Shell Nanocrystals and Their Electrical and Optical Properties. J Am. Chem. Soc. 2015, 137, 2265-2275.
31. Li, T.; Senesi, A. J.; Lee, B. Small Angle X-ray Scattering for Nanoparticle Research. Chem. Rev. 2016, 116, 11128–11180.
32. Liao, C.-W.; Lin, Y.-S.; Chanda, K.; Song, Y.-F.; Huang, M. H. Formation of Diverse Supercrystals from Self-Assembly of a Variety of Polyhedral Gold Nanocrystals. J. Am. Chem. Soc. 2013, 135, 2684-2693.
33. Li, R.; Bian, K.; Wang, Y.; Xu, H.; Hollingsworth, J. A.; Hanrath, T.; Fang, J.; Wang, Z. An Obtuse Rhombohedral Superlattice Assembled by Pt Nanocubes. Nano Lett. 2015, 15, 6254-6260.
34. Goodfellow, B. W.; Korgel, B. A. Reversible Solvent Vapor-Mediated Phase Changes in Nanocrystal Superlattices. ACS Nano 2011, 5, 2419-2424.
35. Yang, P.-W.; Liu, Y.-T.; Hsu, S.-P.; Wang, K.-W.; Jeng, U.; Lin, T.-L.; Chen, T.-Y. Core-Shell Nanocrystallite Growth via Heterogeneous Interface Manipulation. Cryst. Eng. Comm. 2015, 17, 8623-8631.
36. Ocier, C. R.; Smilgies, D.-M.; Robinson, R. D.; Hanrath, T. Reconfigurable Nanorod Films: An in Situ Study of the Relationship between the Tunable Nanorod Orientation and the Optical Properties of Their Self-Assembled Thin Films. Chem. Mater. 2015, 27, 2659-2665.
37. Jeng, U.-S.; Su, C. H.; Su, C.-J.; Liao, K.-F.; Chuang, W.-T.; Lai, Y.-H.; Chang, J.-W.; Chen, Y.-J.; Huang, Y.-S.; Lee, M.-T.; Yu, K.-L.; Lin, J.-M.; Liu, D.-G.; Chang, C.-F.; Liu, C.-Y.; Chang, C.-H.; Liang, K. S. A Small/Wide-Angle X-Ray Scattering Instrument for Structural Characterization of Air-Liquid Interfaces, Thin Films and Bulk Specimens. J. Appl. Cryst. 2010, 43, 110-121.
38. Pietra, F.; Rabouw, F. T.; Evers, W. H.; Byelov, D. V.; Petukhov, A. V.; de Mello Donegá, C.; Vanmaekelbergh, D. Semiconductor Nanorod Self-Assembly at the Liquid/Air Interface Studied by in Situ GISAXS and ex situ TEM. Nano Lett. 2012, 12, 5515-5523.
39. Li, R.; Zhang, J.; Tan, R.; Gerdes, F.; Luo, Z.; Xu, H.; Hollingsworth, J. A.; Klinke, C.; Chen, O.; Wang, Z. Competing Interactions between Various Entropic Forces toward Assembly of Pt3Ni Octahedra into a Body-Centered Cubic Superlattice. Nano Lett. 2016, 16, 2792-2799.
40. Goyal, P. S.; Aswal, V. K. Combined SANS and SAXS in Studies of Nanoparticles with Core-Shell Structure. Ind. J. Pure & Appl. Phys. 2006, 44, 724-728.
41. Hore, M. J. A.; Ye, X.; Ford, J.; Gao, Y.; Fei, J.; Wu, Q.; Rowan, S. J.; Composto, R. J.; Murray, C. B.; Hammouda, B. Probing the Structure, Composition, and Spatial Distribution of Ligands on Gold Nanorods. Nano Lett. 2015, 15, 5730-5738.
42. Pal, S.; Bagchi, B.; Balasubramanian, S. Hydration Layer of a Cationic Micelle, C10TAB: Structure, Rigidity, Slow Reorientation, Hydrogen Bond Lifetime, and Solvation Dynamics. J. Phys. Chem. B 2005, 109, 12879-12890.
43. Burns, C.; Spendel, W. U.; Puckett, S.; Pacey, G. E. Solution Ionic Strength Effect on Gold Nanoparticle Solution Color Transition. Talanta 2006, 69, 873-876.
44. Salemme, F. R. A Free Interface Diffusion Technique for the Crystallization of Proteins for X-Ray Crystallography. Arch. Biochem. Biophys. 1972, 161, 533-539.
45. Talapin, D.; Shevchenko, E.; Kornowski, A.; Gaponik, N.; Haase, M.; Rogach, A. L. Weller, H. A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three-Dimensional Superlattices, Adv. Mater. 2001, 13, 1868-1871.
46. Bodnarchuk, M. I.; Li, L.; Fok, A.; Nachtergaele, S.; Ismagilov, R. F.; Talapin, D. V. Three-Dimensional Nanocrystal Superlattices Grown in Nanoliter Microfluidic Plugs, J. Am. Chem. Soc. 2011, 133, 8956-8960.
47. Mukherjee, P. K.; Bhattacharya, J., Phenomenological Theory of the Nematic to Lamellar Phase Transition in Lyotropic Liquid Crystals, J. Chem. Phys. 2007, 126, 024901.
48. Lai, Y.-H.; Cheng, S.-W.; Chen, S.-W.; Chang, J.-W.; Su, C.-J.; Su, A.-C.; Sheu, H.-S.; Mou, C.-Y.; Jeng, U. Interplay of Formation Kinetics for Highly Oriented and Mesostructured Silicate–Surfactant Films at Air–Water Interface, RSC Adv. 2013, 3, 3270-3283.
49. Wijmans, J. G.; Smolders, C. A. Preparation of Asymmetric Membranes by the Phase Inversion Process. Bungay, P. M. (eds.), Synthetic Membranes: Science, Engineering and Applications, D. Reidel Publishing Co., 1986, 39-56.
50. Boom, R. M.; Wlenk, I. M.; van den Boomgaard Th.; Smolders, C. A. Microstructures in Phase Inversion Membranes. Part 2. The Role of a Polymeric Additive. J. Mem. Sci. 1992, 73, 277-292.
51. Lai, Y.-H.; Chen, S.-W.; Hayashi, M.; Shiu, Y.-J.; Huang, C.-C.; Chuang, W.-T.; Su, C.-J.; Jeng, H.-C.; Chang, J.-W.; Lee, Y.-C.; Su, A.-C.; Mou, C.-Y.; Jeng, U.-S. Mesostructured Arrays of Nanometer-Spaced Gold Nanoparticles for Ultrahigh Number Density of SERS Hot Spots. Adv. Funct. Mater. 2014, 24, 2544-2552.
52. Forster, S.; Apostol, L.; Bras, W. Scatter: Software for the Analysis of Nano- and Mesoscale Small-Angle Scattering. J. Appl. Cryst. 2010, 43, 639-646.
Chapter II references:
1. Chung, P.-J.; Lyu, L.-M.; Huang, M. H. Seed-Mediated and Iodide-Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures. Chem.-Eur. J. 2011, 17, 9746‒9752.
2. Lin, Z.-W.; Tsao, Y.-C.; Yang, M.-Y.; Huang, M. H. Seed-Mediated Growth of Silver Nanocubes in Aqueous Solution with Tunable Size and Their Conversion to Au Nanocages with Efficient Photothermal Property. Chem.-Eur. J. 2016, 22, 2326‒2332.
3. Chiang, C.; Huang, M. H. Synthesis of Small Au‒Ag Core‒Shell Cubes, Cuboctahedra, and Octahedra with Size Tunability and Their Optical and Photothermal Properties. Small 2015, 11, 6018‒6025.
4. Zhou, S.; Li, J.; Gilroy, K. D.; Tao, J.; Zhu, C.; Yang, X.; Sun, X.; Xia, Y. Facile Synthesis of Silver Nanocubes with Sharp Corners and Edges in an Aqueous Solution. ACS Nano 2016, 10, 9861–9870.
5. Zhang, J.; Feng, C.; Deng, Y.; Liu, L.; Wu, Y.; Shen, B.; Zhong, C.; Hu, W. Shape-Controlled Synthesis of Palladium Single-Crystalline Nanoparticles: The Effect of HCl Oxidative Etching and Facet-Dependent Catalytic Properties. Chem. Mater. 2014, 26, 1213‒1218.
6. Liu, S.-Y.; Shen, Y.-T.; Chiu, C.-Y.; Rej, S.; Lin, P.-H.; Tsao, Y.-C.; Huang, M. H. Direct Synthesis of Palladium Nanocrystals in Aqueous Solution with Systematic Shape Evolution. Langmuir 2015, 31, 6538‒6545.
7. Zhang, H.-X.; Wang, H.; Re; Y.-S.; Cai, W.-B. Palladium Nanocrystals Bound by {110} or {100} Facets: from One Pot Synthesis to Electrochemistry. Chem. Commun. 2012, 48, 8362‒8364.
8. Niu, W.; Zhang, L.; Xu, G. Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals. ACS Nano 2010, 4, 1987‒1996.
9. Lu, S.-C.; Hsiao, M.-C.; Yorulmaz, M.; Wang, L.-Y.; Yang, P.-Y.; Link, S.; Chang, W.-S.; Tuan, H.-Y. Single-Crystalline Copper Nanooctahedra. Chem. Mater. 2015, 27, 8185–8188.
10. Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y. Monodisperse Copper Nanocubes: Synthesis, Self-Assembly, and Large-Area Dense-Packed Films. Chem. Mater. 2014, 26, 1785‒1793.
11. Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D.-L. Facile Synthesis of Cu and Cu@Cu‒Ni Nanocubes and Nanowires in Hydrophobic Solution in the Presence of Nickel and Chloride Ions. Nanoscale 2013, 5, 2394‒2402.
12. Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L. Shape-Selective Formation of Mesoporous Copper Nanospheres and Nanocubes via Disproportionation Reaction Route and Their Optical Properties. J. Phys. Chem. C 2014, 118, 9801‒9808.
13. Wang, Y.; Chen, P.; Liu, M. Synthesis of Well-Defined Copper Nanocubes by a One-Pot Solution Process. Nanotechnology 2006, 17, 6000‒6006.
14. Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z.; Xia, Y. Shape-Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent. Angew. Chem., Int. Ed. 2011, 50, 10560‒10564.
15. Hsia, C.-F.; Madasu, M.; Huang, M. H. Aqueous Phase Synthesis of Au‒Cu Core‒Shell Nanocubes and Octahedra with Tunable Sizes and Noncentrally Located Cores. Chem. Mater. 2016, 28, 3073‒3079.
16. Ren, X.; Chen, D.; Tang, F. Shape-Controlled Synthesis of Copper Colloids with a Simple Chemical Route. J. Phys. Chem. B 2005, 109, 15803‒15807.
17. Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722‒3811.
18. Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Multicomponent Click Synthesis of 1,2,3-Triazoles from Epoxides in Water Catalyzed by Copper Nanoparticles on Activated Carbon. J. Org. Chem. 2011, 76, 8394 –8405.
19. Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon. Org. Biomol. Chem. 2011, 9, 6385–6395.
20. Madasu, M.; Hsia, C.-F.; Huang, M. H. Au-Cu core-shell nanocube-catalyzed click reactions for efficient synthesis of diverse triazoles. Nanoscale 2017, 9, 6970–6974.
21. Kim, J. H.; Chung, Y. K. Copper nanoparticle-catalyzed cross-coupling of alkyl halides with Grignard reagents. Chem. Commun. 2013, 49, 11101–11103.
22. Zhao, J.; Niu, Z.; Fu, H.; Li, Y. Ligand-Free Hydroboration of Alkynes Catalyzed by Heterogeneous Copper Powder with High Efficiency. Chem. Commun. 2014, 50, 2058‒2060.
23. Grirrane, A.; Corma, A.; Garcia, H. Stereoselective Single (Copper) or Double (Platinum) Boronation of Alkynes Catalyzed by Magnesia-Supported Copper Oxide or Platinum Nanoparticles. Chem.-Eur. J. 2011, 17, 2467‒2478.
24. Kim, J. H.; Chung, Y. K. Copper nanoparticle-catalyzed borylation of alkyl bromides with an organodiboron compound. RSC Adv. 2014, 4, 39755–39758.
25. Gunanathan, G.; Hölscher, M.; Pan, F.; Leitner, W. Ruthenium Catalyzed Hydroboration of Terminal Alkynes to Z-Vinylboronates. J. Am. Chem. Soc. 2012, 134, 14349‒14352.
26. Cid, J.; Carbó, J. J.; Fernández, E. Catalytic Non-Conventional trans-Hydroboration: A Theoretical and Experimental Perspective. Chem.-Eur. J. 2012, 18, 1512‒1521.
27. Tai, C.-C.; Yu, M.-S.; Chen, Y.-L.; Chuang, W.-H.; Lin, T.-H.; Yap, G. P. A.; Ong, T.-G. Synthesis of a Guanidine NHC Complex and its Application in Borylation Reactions. Chem. Commun. 2014, 50, 4344‒4346.
28. Bidal, Y. D.; Lazreg, F.; Cazin, C. S. J. Copper-Catalyzed Regioselective Formation of Tri- and Tetrasubstituted Vinylboronates in Air. ACS Catal. 2014, 4, 1564‒1569.
29. Fujihara, T.; Semba, K.; Terao, J.; Tsuji, Y. Regioselective Transformation of Alkynes Catalyzed by a Copper Hydride or Boryl Copper Species. Catal. Sci. Technol. 2014, 4, 1699‒1709.
30. Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir 2010, 26, 12307‒12313.
31. Jin, M.; Zhang, H.; Wang, J.; Zhong, X.; Lu, N.; Li, Z.; Xie, Z.; Kim, M. J.; Xia, Y. Copper Can Still Be Epitaxially Deposited on Palladium Nanocrystals To Generate Core‒Shell Nanocubes Despite Their Large Lattice Mismatch. ACS Nano 2012, 6, 2566‒2573.
32. Ji, R.; Sun, W.; Chu, Y. One-Step Hydrothermal Synthesis of Ag/Cu2O Heterogeneous Nanostructures over Cu Foil and Their SERS Applications. RSC Adv. 2014, 4, 6055‒6059.
33. Wu, S.-C.; Tan, C.-S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O‒ZnO Heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
34. Chu, H.-C.; Chang, Y.-C.; Lin, Y.; Chang, S.-H.; Chang, W.-C.; Li, G.-A.; Tuan, H.-Y. Spray-Deposited Large-Area Copper Nanowires Transparent Conductive Electrodes and Their Use for Touch Screen Applications. ACS Appl. Mater. Interfaces 2016, 8, 13009‒13017.
35. Ye, S.; Rathmell, A. R.; Stewart, I. E.; Ha, Y.-C.; Wilson, A. R.; Chen, Z.; Wiley, B. J. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem. Commun. 2014, 50, 2562–2564.
36. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and Form of Gold Nanorods Prepared by Seed-Mediated, Surfactant-Directed Synthesis. J. Mater. Chem. 2002, 12, 1765‒1770.
37. H.-J. Yang, S.-Y. He and H.-Y. Tuan, Self-Seeded Growth of Five-Fold Twinned Copper Nanowires: Mechanistic Study, Characterization, and SERS Applications. Langmuir 2014, 30, 602‒610.
38. Luo, M.; Zhou, M.; da Silva, R. R.; Tao, J.; Figueroa-Cosme, L.; Gilroy,K. D.; Peng, H.-C.; He, Z.; Xia, Y. Pentatwinned Cu Nanowires with Ultrathin Diameters below 20 nm and Their Use as Templates for the Synthesis of Au‐Based Nanotubes. ChemNanoMat 2017, 3, 190–195.
Chapter III references:
1. Chanda, K. Rej, S. Huang, M. H. Facet‐Dependent Catalytic Activity of Cu2O Nanocrystals in the One‐Pot Synthesis of 1,2,3‐Triazoles by Multicomponent Click Reactions. Chem. Eur. J. 2013, 19, 16036–16043.
2. Chanda, K.; Rej, S.; Huang, M. H. Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3,5-disubstituted isoxazoles. Nanoscale 2013, 5, 12494–12501.
3. Li, L.; Nan, C.; Peng, Q.; Li, Y. Selective Synthesis of Cu2O Nanocrystals as Shape-Dependent Catalysts for Oxidative Arylation of Phenylacetylene. Chem.-Eur. J. 2012, 18, 10491–10496.
4. Tsai, Y.-H.; Chanda, K.; Chu, Y.-T.; Chiu, C.-Y.; Huang, M. H. Direct Formation of Small Cu2O Nanocubes, Octahedra, and Octapods for Efficient Synthesis of Triazoles. Nanoscale 2014, 6, 8704–8709.
5. Huang, M. H.; Rej, S.; Hsu, S.-C. Facet-Dependent Properties of Polyhydral Nanocrystals. Chem. Commun. 2014, 50, 1634–1644.
6. Kwon, Y.; Soon, A.; Han, H.; Lee, H. Shape Effects of Cuprous Oxide Particles on Stability in Water and Photocatalytic Water Splitting.. J. Mater. Chem. A 2015, 3, 156–162.
7. Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity. J. Phys. Chem. C 2010, 114, 5073–5079.
8. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155–2160.
9. Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H. Facet-Dependent Optical Properties of Polyhedral Au–Cu2O Core–Shell Nanocrystals. Nanoscale 2014, 6 , 4316–4324.
10. Hsu, S.-C.; Liu, S.-Y.; Wang, H.-J.; Huang, M. H. Facet-Dependent Surface Plasmon Resonance Properties of Au–Cu2O Core–Shell Nanocubes, Octahedra, and Rhombic Dodecahedra Small 2015, 11, 195–201.
11. Huang, M. H.; Rej, S.; Chiu, C.-Y. Facet‐Dependent Optical Properties Revealed through Investigation of Polyhedral Au–Cu2O and Bimetallic Core–Shell Nanocrystals. Small 2015, 11, 2716–2726.
12. Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Facet-Dependent Optical Properties of Pd–Cu2O Core–Shell Nanocubes and Octahedra. Nanoscale 2015, 7, 11135–11141.
13. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 3530–3534.
14. Huang, J.-Y.; Madasu, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 13027–13033.
15. Kuo, C.-H.; Chen, C.-H.; Huang, M. H. Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17, 3773–3780.
16. Gou, L.; Murphy, C. J. Controlling the Size of Cu2O Nanocubes from 200 to 25 nm. J. Mater. Chem. 2004, 14, 735–738.
17. He, P.; Shen, X.; Gao, H. Size-Controlled Preparation of Cu2O Octahedron Nanocrystals and Studies on Their Optical Absorption. J. Colloid Interface Sci. 2005, 284, 510–515.
18. Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Highly Facet-Dependent Photocatalytic Properties of Cu2O Crystals Established through the Formation of Au-Decorated Cu2O Heterostructures. Chem.–Eur. J. 2016, 22, 12548–12556.
19. Rej, S.; Madasu, M.; Tan, C.-S.; Hsia, C.-F.; Huang, M. H. Polyhedral Cu2O to Cu Pseudomorphic Conversion for Stereoselective Alkyne Semihydrogenation. Chem. Sci. 2018, 9, 2517–2524.
20. Wu, H.-L.; Kuo, C.-H.; and Huang, M. H. Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir 2010, 26, 12307–12313.
21. Ho, J.-Y.; Huang, M. H. Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity J. Phys. Chem. C 2009, 113, 14159–14164.
22. Madasu, M.; Hsia, C.-F.; Rej, S.; Huang, M. H. Cu2O Pseudomorphic Conversion to Cu Crystals for Diverse Nitroarene Reduction. ACS Sustain. Chem. Eng. 2018, DOI: 10.1021/acssuschemeng.8b02537.
23. Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z.; Xia, Y. Shape-Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent. Angew. Chem., Int. Ed. 2011, 50, 10560‒10564.
24. Lu, S.-C.; Hsiao, M.-C.; Yorulmaz, M.; Wang, L.-Y.; Yang, P.-Y.; Link, S.; Chang, W.-S.; Tuan, H.-Y. Single-Crystalline Copper Nanooctahedra. Chem. Mater. 2015, 27, 8185–8188.
25. Creutz, C. Complexities of ascorbate as a reducing agent. Inorg. Chem. 1981, 20, 4449-4452.