研究生: |
陳柏志 Po-Chih Chen |
---|---|
論文名稱: |
粉末粒徑與燒結溫度對Bi0.5Sb1.5Te3化合物熱電特性影響之研究 Effect of powder size and sintering temperature thermoelectric properties of sintered Bi0.5Sb1.5Te3 compounds |
指導教授: |
廖建能
Chien-Neng Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 熱電材料 、鉍銻化碲 、粉末冶金 、表面改質 |
外文關鍵詞: | thermoelectric material, Bismuth antimony telluride, powder, sintering |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Bi2Te3化合物是室溫下熱電性質最突出的熱電材料,此類合金具有特殊的層狀結構以及非等向熱電特性,雖然對於單晶型的熱電塊材,特定晶軸方向具備較佳熱電特性,但是容易脆裂的缺點,將提高熱電材料機械加工的難度。而多晶型熱電材料則具有較佳之機械切削特性。本研究想要對於多晶型熱電材料的微結構與熱電特性做一系列的研究,使用粉末冶金製程,將熔煉塊材粉碎至不同粉末粒徑之粉末,利用單軸冷壓機製成塊材,並在不同溫度進行燒結處理,探討不同粉末粒徑與真空燒結溫度,對此類型熱電材料特性的影響,並針對內部微結構及缺陷與粉末粒徑及燒結溫度間變化的關係進行探討。結果顯示粒徑25μm的粉末在375℃燒結三小時後,可得最佳熱電優值約為0.92。另外在本實驗中發現,當燒結溫度超過碲元素熔點時,試片將會產生變形而無法使用,因此本研究嘗試進行表面改質,於粉末表面鍍錫,期望能與多餘的碲反應,避免試片變形。實驗結果發現,經過鍍錫後的熱電塊材,由於形成高熔點的SnTe相,確實避免低熔點的Te相熔融所發生的變形現象。然而,鍍錫處理將提高材料的電阻率與熱傳導係數,因此,粉末經過鍍錫處理的燒結塊材,其熱電優值,降低至0.3以下,本研究亦將針對表面粉末改質對其熱電材料特性之影響,進行探討。
Bi2Te3 compound, known for its special layered structure and anisotropic thermoelectric properties, is the best thermoelectric material for room temperature applications. Single crystalline Bi-Te materials own superior thermoelectric properties along specific crystal orientation, but their brittleness raises difficulty in machining thermoelectric elements. On the other hand, polycrystalline Bi-Te materials have better cutting and machining characteristics than Bi-Te single crystals. In this study we prepared Bi0.5Sb1.5Te3 powders from a pre-melted Bi0.5Sb1.5Te3 compound using ball milling method. These powders were cold-pressed at 600 MPa and then sintered at temperature ranging from 300~450℃ for 3 hrs. The effects of powder size and sintering temperature on the microstructure, thermoelectric properties and defects of the sintered Bi0.5Sb1.5Te3 materials were investigated. It is suggested that a highest figure-of-merit value of 0.92 was achieved for the compacted alloy prepared by 25μm powders and sintered at 375℃ for 3 hrs. It is also found that the sintered specimen would deform badly when the sintered temperature is above 421 ºC, the melting point of tellurium. By coating a thin Sn layer on the powder surface, the reaction between Sn and excess Te leads to the formation of SnTe compound that can resolve the specimen deformation problem. However, the Sn coating treatment results in a large increase in both electrical resisitivity and thermal conductivity of the sintered alloy- and in turn a low ZT value of 0.3 at 300K. The effects of Sn coating treatment on the thermoelectric properties of the sintered alloy are also discussed.
[1] D. M. Rowe. “Thermoelectrics Handbook : Macro to Nano”, CRC Press, Boca Raton, Chap1 : P.1. 1995.
[2] S.Bhattacharya, M.J. Skove, “Grain structure and thermal transport properties of TiNiSn1-xSbx and Ti1-yZryNiSn0.95Sb0.05 Half-Heusler alloys”, 2005 International
Conference on Thermoelectric, 343 (2005).
[3] K. Kishimoto, K. Yamamoto and T. Koyanagi, “Influences of potential barriers scattering on the thermoelectric properties of sintered n-type PbTe with a small grain size”. Japanese Journal of Applied Physics, 42, 501 (2003).
[4] G. S. Nolas, J. Sharp and H. J. Goldsmid,“Thermoelectrics”, Springer, Berlin ; New York, Chap 2 : P.40. 1962.
[5] D. M. Rowe, “CRC handbook of thermoelectrics”, CRC Press, Boca Raton, Chap5 : P.42. 1995.
[6] G. S. Nolas, J. Sharp and H. J. Goldsmid, “Thermoelectrics”, Springer, Berlin ; New York, Chap 3 , P.79. 1962.
[7] D. H. Kim, T. Mitani, “Thermoelectric properties of fine-grained Bi2Te3 alloys”, Journal of Alloys and Compounds, 399, 14 (2005).
[8] Z. Stary, J. Horak, M. Storduer and M. Stolzer, “Antisite defects in Sb2-xBixTe3 mixed crystals”, Journal of Physics and Chemistry of Solids, 49, No.1, 29 (1988).
[9] T. S. Oh, D. B. Hyun and N. V. Kolomoets, “Thermoelectric propterties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys“, Scripta Materialia, 42, 849 (2000).
[10] J. Jiang, L. Chen, S. Bai, Q. Yao and Q. Wang, “Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x crystals prepared via zone melting”, Journal of
Crystal Growth, 227, 258 (2005).
[11] G. R. Miller, C. Y. Li, “Evidence for the existence of antistructure defects in Bismuth Telluride by density measurements”, Journal of Physics and Chemistry of Solids, 26, 173 (1963).
[12] D. B. Hyun, T. S. Oh, J. S. Hwang and J. D. Shim, “Effect of excess Te addition on the thermoelectric properties of the 20% Bi2Te3-80% Sb2Te3 single crystal and hot-pressed alloy”, Scripta Materialia, 44, 455 (2001).
[13] J. Navratil, Z. Stary and T. Plechacek, “Thermoelectric properties of p-type antimony Bismuth Telluride alloys prepared by cold pressing”, Materials Research Bulletin, 31, No. 12, 1559 (1996).
[14] X. Wu, G. Xu, Y. Xu, C. Zhang and C. Ge, “Mechanical and thermoelectric performance of p-type Bi-Sb-Te prepared by hot pressing”, 2006 International Conference on Thermoelectrics, 652 (2006).
[15] J. Jiang, L. Chen, Q. Yao and Q. Wang, “Preparation and properties of p-type (Bi2Te3)x(Sb2Te3)1-x thermoelectric materials”, Materials Transactions, 46, No. 5, 959 (2005).
[16] J. Jiang, L. Chen, S. Bai, Q. Yao and Q. Wang, “Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering”, Scripta Materialia, 52, 347 (2005).
[17] O. Ben-Yehuda, Y. Gellbstein, Z. Dashevsky, R. Shuker and M. P. Dariel,“Improved power factor of Bi0.4Sb1.6Te3 – based samples prepared by cold pressing and sintering”, 2006 International Conference on Thermoelectrics, 492 (2006).
[18] D. K. Schroder, “Semiconductor material and device characterization – Third edition”, John Wiley and Sons, Inc, IEEE press, Hoboken, Chap 1: P.2. 2006.
[19] A. Uhlir Jr., “The potentials of infinite systems of sources and numerical solutions of problems in semiconductor engineering”, The Bell System Technical Journal, 34, 105 (1955).
[20] F. M. Smits, “Measurement of sheet resistivities with the four-point probe”, The Bell System Technical Journal, 37, 711 (1958).
[21] Thaddeus B. Massalski, “Binary alloy phase diagram”, Materials Park : ASM International Society, Ohio, 1990.
[22] P. Villars, A. Prince and H. Okamoto, “Handbook of ternary alloy phase
diagram”, Materials Park : ASM International Society, Ohio, 1995.
[23] J. M. Schultz, J. P. Mchugh and W. A. Tiller, “Effects of heavy deformation and
annealing on the electrical properties of Bi2Te3”, Journal of Applied Physics, 33,
8, 2443 (1962).
[24] D. B. Hyun, J. S. Hwang and J. D. Shim, “Thermoelectric properties of
(Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method” Journal of Materials
Science, 36, 1285 (2001).
[25] H. Noro, K. Sato and H. Kagechika, “The thermoelectric properties and crystallography of Bi-Sb-Te-Se thin films grown by ion beam sputtering”, Journal of Applied Physics, 73, 1252 (1993).
[26] Barin, Ihsan, “Thermochemical data of pure substances”, Weinheim : Federal Republic of Germany, New York, 1989.
[27] B. Paudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren,“High-thermoelectric performance of nanostructured Bismuth Antimony Telluride bulk alloys”, Science, 320, 634 (2008).