研究生: |
巫國維 |
---|---|
論文名稱: |
固體觸媒生產生質柴油之研究 |
指導教授: | 黃世傑 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 生質柴油 、固體觸媒 、甲基酯 、轉酯化 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
油價的高漲,環保意識的抬頭,發展新型態且乾淨的替代能源成為全世界的首要目標。就目前發展的生質能而言,生質柴油能以回收的廢食用油進行生產,且具有生物可分解性、不含硫、無苯環化合物、燃燒排放物質較無污染,是一種兼顧環保並可永續經營的能量來源。
本研究主要先由各種觸媒進行轉酯化反應,嘗試找出具有發展潛力之觸媒,經實驗評估後選定CsF/α-Al2O3為本研究主要探討之觸媒,再以各種方法嘗試提高轉酯化反應之轉化率。
為了減少質傳阻力對實驗的影響,進行轉速探討;為了增加觸媒活性,改變含浸在載體上的量、觸媒載體與鍛燒溫度;醇油比的大小與觸媒添加比例亦為影響反應轉化率的關鍵因素。經實驗結果歸納得到:4.0 mmol CsF/g γ-Al2O3對轉酯化反應於60 ℃進行,醇油比12:1,轉速400 rpm,觸媒添加量8 %為較佳的反應條件,當反應進行1小時,轉化率達91%。但在觸媒重複使用性上,觸媒僅能使用一次,是此觸媒應用在轉酯化反應上的限制。
觸媒具有反應性之原因是由於CsF與γ-Al2O3共同存在時,含浸鍛燒後產生具催化能力的活性位置,以純CsF作為觸媒進行反應,不具催化能力,因此無法產生任何的甲基酯。
李秉傑,邱宏明,王奕凱合譯 (1988)。非均勻係催化原理應用,110-113。台北:渤海堂文化事業有限公司。
吳耿東、李宏台 (2004)。生質能源---化腐朽為能源。科學發展月刊,383,20-27。
翁鴻山 (2003)。反應中的紅娘。科學發展月刊,370,6-11。
Agarwal, A. K. (1992) Performance evaluation and emission characteristics of a compression ignition engine using esterified biodiesel. Centre for Energy Studies, 82.
Agarwal, A. K. and Das, L. M. (2001) Biodiesel development and characterization for use as a fuel in compression ignition engines. Journal of Engineering for Gas Turbines and Power-transactions of the ASME 123(2), 440-447.
Antolin, G., Tinaut, F. V., Briceno, Y., Castano, V., Perez, C., and Ramirez, A. I. (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresource Technology 83(2), 111-114.
Arata, K. (1996) Preparation of superacids by metal oxides for reactions of butanes and pentanes. Applied Catalysis A: General 146, 3-32.
ASTM International, (2005) Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. ASTM D 6304-04.
ASTM International, (2006) Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration. ASTM D 664-06.
Baird, T., Bendada, A., Webb, G., and Winfield J. M. (1991) Alkali-metal fluorides supported on γ-Alumina - Surface reactions involving 18F- and 35S-labelled sulphur tetrafluoride and thionyl fluoride, 35S-labelled sulphur dioxide, l8F- and 14C-labelled carbonyl fluoride and 14C-labelled carbon dioxide. Journal of Materials Chemistry 1(6), 1071-1077
Billaud, F., Dominguez, V., Broutin, P., and Busson, C. (1995) Production of Hydrocarbons by Pyrolysis of Methyl-esters from Rapeseed oil. Journal of the American Oil Chemists Society 72(10), 1149-1154.
Cantrell, D. G., Gillie, L. J., Lee, A. F., and Wilson K. (2005). Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis A: General 287, 183–190.
Cetinkaya, M. and Karaosmanoglu, F. (2004) Optimization of base-catalyzed transesterification reaction of used cooking oil. Energy and Fuels 18(6), 1888-1895.
Clacens, J. M., Genuit, D., Veldurthy, B., Bergeret, G., Delmotte, L., Garcia-Ruiz1, A., and Figueras, F. (2004) CsF supported by α-alumina: an efficient basic catalyst. Applied Catalysis B: Environmental 53, 95–100
Demirbas, A. (2002) Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management 43(17), 2349-2356.
Demirbas, A. (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management 44(13), 2093-2109.
Di Serio, M., Ledda, M., Cozzolino, M., Minutillo, G., Tesser, R., and Santacesaria E. (2006). Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Industrial and Engineering Chemistry Research 45, 3009-3014.
Ebiura, T., Echizen, T., Ishikawa, A., Murai, K., and Baba, T. (2005) Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst. Applied Catalysis A: General 283, 111–116.
European Committee for Standardization, (2002) Fat and oil derivatives – Fatty Acid Methyl Esters (FAME) – Determination of ester and linolenic acid methyl ester contents. EN 14103.
Fangrui, M. and Milford, A. H. (1999) Biodiesel production: a review. Bioresource Technology 70, 1-15.
Freedman, B., Butterfield, R. O., and Pryde, E. H. (1986) Transesterification kinetics of soybean oil. Journal of the American Oil Chemists Society 63(10), 1375-1380.
Freedman, B., Pryde, E. H., and Mounts, T. L. (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society 61(10), 1638-1643.
Furuta, S., Matsuhashi, H., and Arata, K. (2004) Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis Communications 5, 721–723.
Haas, M. J., Michalski, P. J., Runyon, S., Nunez, A., and Scott, K. M. (2003) Production of FAME from acid oil, a by-product of vegetable oil refining. Journal of the American Oil Chemists Society 80(1), 97-102.
Haba, O., Itakura, I., Ueda, M., and KUZE, S. (1999) Synthesis of polycarbonate from dimethyl carbonate and bisphenol-A through a non-phosgene process. Journal of Polymer Science Paet A - Polymer Chem.istry 37(13), 2087-2093
Hsu, J. P. and Wong, J. J. (2006) Melt transesterification of polycarbonate catalyzed by DMAP. Industrial and Engineering Chemistry Research 45(8), 2672-2676
Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., and Jenvanitpanjakul, P. (2006) Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal 116, 61–66.
Kim, H. J., Kanga, B. S., Kima, M. J., Park, Y. M., Kimb, D. K., and Lee, J. S. (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today 93–95, 315–320.
Knothe, G., Matheaus, A. C., and Ryan, T. W. (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82(8), 971-975.
Lo´pez, D. E., Goodwin Jr., J. G., Bruce, D. A., and Lotero, E. (2005) Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General 295, 97–105.
Li, M. S., Ma, C. C. M., Chen, J. L., Lin, M. L. and Chang, F. C. (1996) Epoxy-polycarbonate blends catalyzed by a tertiary amine. 1. mechanism of transesterification and cyclization. Macromolecules 29(2), 499-506
Liang, Y. C., May, C. Y., Foon, C. S., Ngan, M. A., Hock, C. C., and Basiron Y. (2006) The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel 85(5-6), 867-870.
Ma, F. R. and Hanna, M. A . (1999) Biodiesel production: a review. Bioresource Technology 70(1), 1-15.
Mazzocchia, C., Modica, G., Kaddouri, A., and Nannicini, R. (2004) Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves. Compets Rendus Chimie 7, 601–605.
Noureddini, H., Gao, X., and Philkana, R. S. (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology 96(7), 769-777.
Noureddini, H. and Zhu, D. (1997) Kinetics of transesterification of soybean oil. Journal of the American Oil Chemists Society 74(11), 1457-1463.
Onay, O., Beis, S. H., and Kockar, O. M. (2001) Fast pyrolysis of rape seed in a well-swept fixed-bed reactor. Journal of Analytical and Applied Pyrolysis 58, 995-1007.
Pryde, E. H. (1984) Vegetable oils as fuel alternatives – symposium overview. Journal of the American Oil Chemists Society 61, 1609-1610.
Pryor, R. W., Hanna, M. A., Schinstock, J. L., and Bashford, L. L. (1983) Soybean oil fuel in a small diesel engine. Transactions of the ASAE 26(2), 333-337.
Reddy, C. R. V., Oshel, R., and Verkade, J. G. (2006) Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy and Fuels 20, 1310-1314.
Robert, T. M., Robert, and N. B. (1999) Organic Chemistry. (6th ed.). Prentice Hall International, Inc. New York, America.
Saka, S., and Kusdiana, D. (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80(2), 225-231.
Schwab, A.W., Bagby, M.O., and Freedman, B. (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66, 1372-1378.
Schwab, A. W., Dykstra, G. J., Selke, E., Sorenson, S. C., and Pryde, E. H. (1988). Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists Society 65, 1781-1786.
Shay, E.G. (1993) Diesel fuel from vegetable oils: status and opportunities. Biomass and Bioenergy 4, 227-242.
Shimada, Y., Watanabe, Y., Sugihara, A., and Tominaga, Y. (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B-enzymatic 17(3-5), 133-142.
Srivastava, A. and Prasad, R. (2000) Triglycerides-based diesel fuels. Renewable and Sustainable Enerty Reviews 4(2), 111-133.
Suppes, G. J., Dasari, M. A., Doskocil, E. J., Mankidy, P. J., and Goff, M. J. (2004) Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General 257, 213–223.
Tanabe, K., Solid Acids and Bases, Academic, New York (1970).
Veldurthy, B., Clacens, J. M., and Figueras, F. (2005) Correlation between the basicity of solid bases and their catalytic activity towards the synthesis of unsymmetrical organic carbonates. Journal of Catalysis 229, 237–242
Vicente, G., Martinez, M., and Aracil, J. (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology 92(3), 297-305.
Xie, W. and Huang, X. (2006). Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catalysis Letters 107, 53-59.
Xie, W., Peng, H., and Chen, L. (2006a) Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical 246, 24–32.
Xie, W., Peng, H., and Chen, L. (2006b) Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General 300, 67–74.
Yamaguchi, T. and Ookawa, M. (2006) A consideration on the state of dispersed metal nitrate and carbonate of Group 1 and 2 elements and basicity generation. Catalysis Today 116, 191–195
Ziejewski, M., Kaufman, K. R., Schwab, A. W., and Pryde, E. H. (1984) Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion. Journal of the American Oil Chemists Society 61, 1620-1626.