研究生: |
王黃舟 Wang, Huang-Joe |
---|---|
論文名稱: |
內皮細胞組織因子在心血管疾病的角色 The Role of Endothelial Tissue Factor in Cardiovascular Diseases |
指導教授: |
黄海美
Huang, Haimei |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 人類主動脈內皮細胞 、凝血酶 、組織因子 、糖尿病 、葡萄糖 、藥物塗層支架 、支架栓塞 、太平洋紫杉醇 、益多酚 |
外文關鍵詞: | Human aortic endothelial cell, Thrombin, Tissue factor, Diabetes mellitus, Glucose, Drug-eluting stent, Stent thrombosis, Paclitaxel, (-)-Epigallocatechin-3-gallate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Atherosclerosis is a gradual process that starts early in childhood. It may clinically manifest as coronary artery disease, ischemic stroke, and peripheral arterial occlusive disease. In the later stages of life, atherothrombosis, which is defined as an atherosclerotic plaque disruption with superimposed thrombosis, is the leading cause of morbidity and mortality in the developed countries. The magnitude of the thrombotic processes triggered upon plaque disruptions, is dependent upon tissue factor (TF). TF is the principal initiator of thrombus formation of extrinsic coagulation system. Previous reports have documented that thrombin could elicit TF production in endothelial cells coming from human umbilical cord vein and human saphenous vein. We demonstrate that endothelial cells from arterial side (i.e human aortic endothelial cells, HAECs) still preserve the same response to human thrombin regarding to its ability to induce TF expression.
Patients with diabetes mellitus have increased cardiovascular morbidity and mortality. Diabetes is associated with a hypercoagulable state. In addition, TF antigen is elevated in diabetic patients with microvascular complications and TF activity is reduced in diabetic patients with improved glycemic control. Hyperglycemia is a major contributor to the vascular diseases associated with diabetes. The hyperglycemia-induced formation of reactive oxygen species can lead to endothelial dysfunction and promote the formation of atherosclerotic plaques. However, we demonstrate that high glucose conditions do not provide the sufficient stress required to induce TF expression in HAECs.
Percutaneous intervention using coronary metallic stents has been commonly used in the treatment of atherothrombotic lesions in the coronary arteries since the mid-1990s. However, angiographic in-stent restenosis still occurs in 20–30% of the patients. In order to prevent in-stent restenosis, drug-eluting stents (DESs) capable of providing prolonged local delivery of antiproliferative agents were developed in the early 2000s. One of the first-generation DESs was paclitaxel-eluting stents (PESs). Paclitaxel is a microtubule-stabilizing drug that disrupts the cell cycle in the G2/M phase. It is used in DESs because of its ability to reduce in-stent restenosis by inhibiting vascular smooth-muscle cell proliferation and migration. Patients with PESs are concerned with stent thrombosis caused by premature discontinuation of dual antiplatelet therapy or clopidogrel resistance. We demonstrate that paclitaxel alone can up-regulate endothelial TF expression, which can explain PES-associated thrombotic risks.
Some naturally occurring substances in a normal diet provide a new insight in cardiovascular therapy. Green tea, particularly its major polyphenolic constituent, (-)-epigallocatechin-3-gallate (EGCG), possesses remarkable cancer therapeutic potential as well as cardioprotective effects. The beneficial cardiovascular effects of EGCG may be the result of its pleiotropic effects, which include its antioxidant, antithrombogenic, and anti-inflammatory effects We demonstrate that EGCG can inhibit TF expression in thrombin/paclitaxel- stimulated endothelial cells via the inhibition of JNK phosphorylation. The unique property of EGCG may be used to develop a new drug-eluting stent by co-coating EGCG and paclitaxel.
動脈硬化是一種從小時候就緩慢產生的過程,臨床上它可表現為冠狀動脈疾病、缺血性腦中風、和周邊動脈阻塞疾病。在人晚年時,動脈硬化斑塊可能會破損,造成血液中產生血栓覆蓋在這些破損的動脈硬化斑塊上,進而造成動脈硬化栓塞症。而這正是造成許多已開發國家的主要疾病和死亡的原因。動脈硬化斑塊破損時所刺激血栓產生的強度與組織因子有密切的相關。組織因子是外源性凝血系統產生血栓的主要起始者。過去的研究已經證實凝血酶可以誘發人類的臍帶靜脈內皮細胞和人類的隱靜脈內皮細胞組織因子的產生。我們的研究顯示,凝血酶針對人類動脈端(主動脈內皮細胞)內皮細胞一樣保有誘發組織因子產生的能力。
糖尿病患者其心血管的疾病和死亡都會增加。糖尿病患血液有較易凝結的特性。此外,組織因子的抗原在有微細血管併發症的糖尿病患者血中也會增加, 而血中組織因子的活性在糖尿病患者獲得良好血糖控制時也會下降。高血糖是造成糖尿病患者血管疾病的一個主要原因,高血糖所誘發的反應性氧族會造成內皮功能失常和促進動脈硬化斑塊的產生。但是,我們的研究顯示,以高葡萄糖去刺激人類主動脈內皮細胞並無法提供足夠的刺激誘發組織因子的產生。
經皮去做冠狀動脈血管成形術中,使用冠狀動脈的金屬支架以治療動脈硬化班塊栓塞症在1990年代中期後就非常普遍。但是,冠狀動脈血管攝影中顯示支架內再狹窄的比例仍高達 20-30%。為了要減少支架內再狹窄,可以提供長期局部的抗增生物質釋放的藥物塗層支架在2000年代初期被研發出來。第一代的藥物塗層支架上,有一種是以太平洋紫杉醇塗層的藥物支架。太平洋紫杉醇是一種會穩定微管,進而干擾細胞G2/M週期的藥物。它因為能抑制血管平滑肌細胞的增生和移行,進而減少支架內再狹窄,而被使用在藥物塗層支架。接受太平洋紫杉醇塗層支架的病患,若太早將雙重抗血小板藥劑停掉,或是有保栓通抗性的患者,有可能產生支架栓塞。我們的研究顯示,太平洋紫杉醇本身能使內皮細胞組織因子增加,這發現可以幫助我們去解釋太平洋紫杉醇塗層支架所相關的栓塞風險。
在正常飲食中的某些自然的物質對心血管疾病治療提供一個新的視野。綠茶□面所含有主要多酚類成份益多酚具有極佳的癌症治療的潛能與心血管保護效果。益多酚的心血管保護效果可能是因為它具有抗氧化、抗栓塞、抗發炎等多效性有關。我們的研究顯示,益多酚可以抑制凝血酶和太平洋紫杉醇刺激下內皮細胞組織因子的產生,而這抑制主要是透過c-Jun-終端激酶的磷酸化的抑制。這個益多酚特有的特性可能可以利用來發展新的有益多酚和太平洋紫杉醇共同塗層的藥物支架。
Afaq, F., Adhami, V.M., Ahmad, N., and Mukhtar, H. (2003). Inhibition of ultraviolet B-mediated activation of nuclear factor kappaB in normal human epidermal keratinocytes by green tea Constituent (-)-epigallocatechin-3-gallate. Oncogene 22, 1035-1044.
Ahmad, S.S., Rawala-Sheikh, R., and Walsh, P.N. (1992). Components and assembly of the factor X activating complex. Semin Thromb Hemost 18, 311-323.
Airoldi, F., Colombo, A., Morici, N., Latib, A., Cosgrave, J., Buellesfeld, L., Bonizzoni, E., Carlino, M., Gerckens, U., Godino, C., Melzi, G., Michev, I., Montorfano, M., Sangiorgi, G.M., Qasim, A., Chieffo, A., Briguori, C., Grube, E. (2007). Incidence and predictors of drug-eluting stent thrombosis during and after discontinuation of thienopyridine treatment. Circulation 116, 745-754.
Almus, F.E., Rao, L.V., and Rapaport, S.I. (1988). Decreased inducibility of tissue factor activity on human umbilical vein endothelial cells cultured with endothelial cell growth factor and heparin. Thromb Res 50, 339-344.
Anrather, D., Millan, M.T., Palmetshofer, A., Robson, S.C., Geczy, C., Ritchie, A.J., Bach, F.H., and Ewenstein, B.M. (1997). Thrombin activates nuclear factor-kappaB and potentiates endothelial cell activation by TNF. J Immunol 159, 5620-5628.
Bartha, K., Brisson, C., Archipoff, G., de la Salle, C., Lanza, F., Cazenave, J.P., and Beretz, A. (1993). Thrombin regulates tissue factor and thrombomodulin mRNA levels and activities in human saphenous vein endothelial cells by distinct mechanisms. J Biol Chem 268, 421-429.
Basta, G., Schmidt, A.M., and De Caterina, R. (2004). Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63, 582-592.
Behrendt, D., and Ganz, P. (2002). Endothelial function. From vascular biology to clinical applications. Am J Cardiol 90, 40L-48L.
Bierhaus, A., Illmer, T., Kasper, M., Luther, T., Quehenberger, P., Tritschler, H., Wahl, P., Ziegler, R., Muller, M., and Nawroth, P.P. (1997). Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation 96, 2262-2271.
Biesalski, H.K. (2007). Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care 10, 724-728.
Biondi-Zoccai, G.G., Agostoni, P., Sangiorgi, G.M., Airoldi, F., Cosgrave, J., Chieffo, A., Barbagallo, R., Tamburino, C., Vittori, G., Falchetti, E., Margheri, M., Briguori, C., Remigi, E., Iakovou, I., Colombo, A., Real-world Eluting-stent Comparative Italian retrosPective Evaluation Study Investigators. (2006). Incidence, predictors, and outcomes of coronary dissections left untreated after drug-eluting stent implantation. Eur Heart J 27, 540-546.
Boeri, D., Almus, F.E., Maiello, M., Cagliero, E., Rao, L.V., and Lorenzi, M. (1989). Modification of tissue-factor mRNA and protein response to thrombin and interleukin 1 by high glucose in cultured human endothelial cells. Diabetes 38, 212-218.
Boyle, E.M., Jr., Lille, S.T., Allaire, E., Clowes, A.W., and Verrier, E.D. (1997). Endothelial cell injury in cardiovascular surgery: atherosclerosis. Ann Thorac Surg 63, 885-894.
Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615-1625.
Burke, A.P., Kolodgie, F.D., Zieske, A., Fowler, D.R., Weber, D.K., Varghese, P.J., Farb, A., and Virmani, R. (2004). Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 24, 1266-1271.
Camici, G.G., Steffel, J., Akhmedov, A., Schafer, N., Baldinger, J., Schulz, U., Shojaati, K., Matter, C.M., Yang, Z., Luscher, T.F., Tanner, F.C. (2006). Dimethyl sulfoxide inhibits tissue factor expression, thrombus formation, and vascular smooth muscle cell activation: a potential treatment strategy for drug-eluting stents. Circulation 114, 1512-1521.
Ceriello, A., and Motz, E. (2004). Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24, 816-823.
Cheng, T.O. (2006). All teas are not created equal: the Chinese green tea and cardiovascular health. Int J Cardiol 108, 301-308.
Choi, J.S., Choi, Y.J., Shin, S.Y., Li, J., Kang, S.W., Bae, J.Y., Kim, D.S., Ji, G.E., Kang, J.S., and Kang, Y.H. (2008). Dietary flavonoids differentially reduce oxidized LDL-induced apoptosis in human endothelial cells: role of MAPK- and JAK/STAT-signaling. J Nutr 138, 983-990.
Choi, K.C., Jung, M.G., Lee, Y.H., Yoon, J.C., Kwon, S.H., Kang, H.B., Kim, M.J., Cha, J.H., Kim, Y.J., Jun, W.J., Lee, J.M., Yoon, H.G. (2009). Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 69, 583-592.
Contrino, J., Hair, G., Kreutzer, D.L., and Rickles, F.R. (1996). In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med 2, 209-215.
Corti, R., Hutter, R., Badimon, J.J., and Fuster, V. (2004). Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J Thromb Thrombolysis 17, 35-44.
Coughlin, S.R. (2000). Thrombin signalling and protease-activated receptors. Nature 407, 258-264.
Cutlip, D.E., Chauhan, M.S., Baim, D.S., Ho, K.K., Popma, J.J., Carrozza, J.P., Cohen, D.J., and Kuntz, R.E. (2002). Clinical restenosis after coronary stenting: perspectives from multicenter clinical trials. J Am Coll Cardiol 40, 2082-2089.
Death, A.K., Fisher, E.J., McGrath, K.C., and Yue, D.K. (2003). High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis 168, 263-269.
Dong, Z., Ma, W., Huang, C., and Yang, C.S. (1997). Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins. Cancer Res 57, 4414-4419.
Doshi, S.N., and Marmur, J.D. (2002). Evolving role of tissue factor and its pathway inhibitor. Crit Care Med 30, S241-250.
Drake, T.A., Cheng, J., Chang, A., and Taylor, F.B., Jr. (1993). Expression of tissue factor, thrombomodulin, and E-selectin in baboons with lethal Escherichia coli sepsis. Am J Pathol 142, 1458-1470.
Drake, T.A., Ruf, W., Morrissey, J.H., and Edgington, T.S. (1989). Functional tissue factor is entirely cell surface expressed on lipopolysaccharide-stimulated human blood monocytes and a constitutively tissue factor-producing neoplastic cell line. J Cell Biol 109, 389-395.
Eisenreich, A., Celebi, O., Goldin-Lang, P., Schultheiss, H.P., and Rauch, U. (2008). Upregulation of tissue factor expression and thrombogenic activity in human aortic smooth muscle cells by irradiation, rapamycin and paclitaxel. Int Immunopharmacol 8, 307-311.
Esposito, C., Gerlach, H., Brett, J., Stern, D., and Vlassara, H. (1989). Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med 170, 1387-1407.
Fleck, R.A., Rao, L.V., Rapaport, S.I., and Varki, N. (1990). Localization of human tissue factor antigen by immunostaining with monospecific, polyclonal anti-human tissue factor antibody. Thromb Res 59, 421-437.
Galdal, K.S., Lyberg, T., Evensen, S.A., Nilsen, E., and Prydz, H. (1985). Thrombin induces thromboplastin synthesis in cultured vascular endothelial cells. Thromb Haemost 54, 373-376.
Garlanda, C., and Dejana, E. (1997). Heterogeneity of endothelial cells. Specific markers. Arterioscler Thromb Vasc Biol 17, 1193-1202.
Geisler, T., and Gawaz, M. (2007). Variable response to clopidogrel in patients with coronary artery disease. Semin Thromb Hemost 33, 196-202.
Gori, A.M., Marcucci, R., Migliorini, A., Valenti, R., Moschi, G., Paniccia, R., Buonamici, P., Gensini, G.F., Vergara, R., Abbate, R., Antoniucci, D. (2008). Incidence and clinical impact of dual nonresponsiveness to aspirin and clopidogrel in patients with drug-eluting stents. J Am Coll Cardiol 52, 734-739.
Gyongyosi, M., Strehblow, C., Sperker, W., Hevesi, A., Garamvolgyi, R., Petrasi, Z., Pavo, N., Ferdinandy, P., Csonka, C., Csont, T., Sylvèn, C., Declerck, P.J., Pavo, I. Jr., Wojta, J., Glogar, D., Huber, K. (2006). Platelet activation and high tissue factor level predict acute stent thrombosis in pig coronary arteries: prothrombogenic response of drug-eluting or bare stent implantation within the first 24 hours. Thromb Haemost 96, 202-209.
Hess, J., Angel, P., and Schorpp-Kistner, M. (2004). AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117, 5965-5973.
Hirano, K. (2007). The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 27, 27-36.
Holy, E.W., Stampfli, S.F., Akhmedov, A., Holm, N., Camici, G.G., Luscher, T.F., and Tanner, F.C. (2009). Laminin receptor activation inhibits endothelial tissue factor expression. J Mol Cell Cardiol.
Hoye, A., Iakovou, I., Ge, L., van Mieghem, C.A., Ong, A.T., Cosgrave, J., Sangiorgi, G.M., Airoldi, F., Montorfano, M., Michev, I., Chieffo, A., Carlino, M., Corvaja, N., Aoki, J., Rodriguez Granillo, G.A., Valgimigli, M., Sianos, G., van der Giessen, W.J., de Feyter, P.J., van Domburg, R.T., Serruys, P.W., Colombo, A. (2006). Long-term outcomes after stenting of bifurcation lesions with the "crush" technique: predictors of an adverse outcome. J Am Coll Cardiol 47, 1949-1958.
Iakovou, I., Schmidt, T., Bonizzoni, E., Ge, L., Sangiorgi, G.M., Stankovic, G., Airoldi, F., Chieffo, A., Montorfano, M., Carlino, M., Michev, I., Corvaja, N., Briguori, C., Gerckens, U., Grube, E., Colombo, A. (2005). Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293, 2126-2130.
Ishii, H., Horie, S., Kizaki, K., and Kazama, M. (1992). Retinoic acid counteracts both the downregulation of thrombomodulin and the induction of tissue factor in cultured human endothelial cells exposed to tumor necrosis factor. Blood 80, 2556-2562.
Jaffe, R., and Strauss, B.H. (2007). Late and very late thrombosis of drug-eluting stents: evolving concepts and perspectives. J Am Coll Cardiol 50, 119-127.
Joner, M., Finn, A.V., Farb, A., Mont, E.K., Kolodgie, F.D., Ladich, E., Kutys, R., Skorija, K., Gold, H.K., and Virmani, R. (2006). Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48, 193-202.
Kang, W.S., Lim, I.H., Yuk, D.Y., Chung, K.H., Park, J.B., Yoo, H.S., and Yun, Y.P. (1999). Antithrombotic activities of green tea catechins and (-)-epigallocatechin gallate. Thromb Res 96, 229-237.
Katritsis, D.G., Pantos, J., and Efstathopoulos, E. (2007). Hemodynamic factors and atheromatic plaque rupture in the coronary arteries: from vulnerable plaque to vulnerable coronary segment. Coron Artery Dis 18, 229-237.
Khan, N., Afaq, F., Saleem, M., Ahmad, N., and Mukhtar, H. (2006). Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 66, 2500-2505.
Kohchi, K., Takebayashi, S., Hiroki, T., and Nobuyoshi, M. (1985). Significance of adventitial inflammation of the coronary artery in patients with unstable angina: results at autopsy. Circulation 71, 709-716.
Laine, P., Kaartinen, M., Penttila, A., Panula, P., Paavonen, T., and Kovanen, P.T. (1999). Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation 99, 361-369.
Lee, L.F., Haskill, J.S., Mukaida, N., Matsushima, K., and Ting, J.P. (1997). Identification of tumor-specific paclitaxel (Taxol)-responsive regulatory elements in the interleukin-8 promoter. Mol Cell Biol 17, 5097-5105.
Libby, P. (2006). Atherosclerosis: disease biology affecting the coronary vasculature. Am J Cardiol 98, 3Q-9Q.
Liu, Y., Pelekanakis, K., and Woolkalis, M.J. (2004). Thrombin and tumor necrosis factor alpha synergistically stimulate tissue factor expression in human endothelial cells: regulation through c-Fos and c-Jun. J Biol Chem 279, 36142-36147.
Luscher, T.F., Steffel, J., Eberli, F.R., Joner, M., Nakazawa, G., Tanner, F.C., and Virmani, R. (2007). Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation 115, 1051-1058.
Mackman, N. (1997). Regulation of the tissue factor gene. Thromb Haemost 78, 747-754.
Mackman, N., Brand, K., and Edgington, T.S. (1991). Lipopolysaccharide- mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. J Exp Med 174, 1517-1526.
Mackman, N., Morrissey, J.H., Fowler, B., and Edgington, T.S. (1989). Complete sequence of the human tissue factor gene, a highly regulated cellular receptor that initiates the coagulation protease cascade. Biochemistry 28, 1755-1762.
Mackman, N., Tilley, R.E., and Key, N.S. (2007). Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 27, 1687-1693.
Maluenda, G., Lemesle, G., and Waksman, R. (2009). A critical appraisal of the safety and efficacy of drug-eluting stents. Clin Pharmacol Ther 85, 474-480.
Mann, K.G., Butenas, S., and Brummel, K. (2003). The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol 23, 17-25.
Maragoudakis, M.E., Tsopanoglou, N.E., and Andriopoulou, P. (2002). Mechanism of thrombin-induced angiogenesis. Biochem Soc Trans 30, 173-177.
Marmur, J.D., Thiruvikraman, S.V., Fyfe, B.S., Guha, A., Sharma, S.K., Ambrose, J.A., Fallon, J.T., Nemerson, Y., and Taubman, M.B. (1996). Identification of active tissue factor in human coronary atheroma. Circulation 94, 1226-1232.
Meerarani, P., Badimon, J.J., Zias, E., Fuster, V., and Moreno, P.R. (2006). Metabolic syndrome and diabetic atherothrombosis: implications in vascular complications. Curr Mol Med 6, 501-514.
Mega, J.L., Close, S.L., Wiviott, S.D., Shen, L., Hockett, R.D., Brandt, J.T., Walker, J.R., Antman, E.M., Macias, W., Braunwald, E., Sabatine, M.S. (2009). Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 360, 354-362.
Minami, T., Sugiyama, A., Wu, S.Q., Abid, R., Kodama, T., and Aird, W.C. (2004). Thrombin and phenotypic modulation of the endothelium. Arterioscler Thromb Vasc Biol 24, 41-53.
Misumi, K., Ogawa, H., Yasue, H., Soejima, H., Suefuji, H., Nishiyama, K., Takazoe, K., Kugiyama, K., Tsuji, I., Kumeda, K., Nakamura, S. (1998). Comparison of plasma tissue factor levels in unstable and stable angina pectoris. Am J Cardiol 81, 22-26.
Morel, O., Toti, F., Hugel, B., Bakouboula, B., Camoin-Jau, L., Dignat-George, F., and Freyssinet, J.M. (2006). Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 26, 2594-2604.
Moreno, P.R., and Fuster, V. (2004). New aspects in the pathogenesis of diabetic atherothrombosis. J Am Coll Cardiol 44, 2293-2300.
Moreno, P.R., Murcia, A.M., Palacios, I.F., Leon, M.N., Bernardi, V.H., Fuster, V., and Fallon, J.T. (2000). Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation 102, 2180-2184.
Moreno, P.R., Purushothaman, K.R., Sirol, M., Levy, A.P., and Fuster, V. (2006). Neovascularization in human atherosclerosis. Circulation 113, 2245-2252.
Morrissey, J.H., Macik, B.G., Neuenschwander, P.F., and Comp, P.C. (1993). Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 81, 734-744.
Moser, M., and Patterson, C. (2003). Thrombin and vascular development: a sticky subject. Arterioscler Thromb Vasc Biol 23, 922-930.
Naghavi, M., Libby, P., Falk, E., Casscells, S.W., Litovsky, S., Rumberger, J., Badimon, J.J., Stefanadis, C., Moreno, P., Pasterkamp, G., Fayad, Z., Stone, P.H., Waxman, S., Raggi, P., Madjid, M., Zarrabi, A., Burke, A., Yuan, C., Fitzgerald, P.J., Siscovick, D.S., de Korte, C.L., Aikawa, M., Juhani Airaksinen, K.E., Assmann, G., Becker, C.R., Chesebro, J.H., Farb, A., Galis, Z.S., Jackson, C., Jang, I.K., Koenig, W., Lodder, R.A., March, K., Demirovic, J., Navab, M., Priori, S.G., Rekhter, M.D., Bahr, R., Grundy, S.M., Mehran, R., Colombo, A., Boerwinkle, E., Ballantyne, C., Insull, W. Jr., Schwartz, R.S., Vogel, R., Serruys, P.W., Hansson, G.K., Faxon, D.P., Kaul, S., Drexler, H., Greenland, P., Muller, J.E., Virmani, R., Ridker, P.M., Zipes, D.P., Shah, P.K., Willerson, J.T. (2003). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108, 1664-1672.
Nemerson, Y., and Repke, D. (1985). Tissue factor accelerates the activation of coagulation factor VII: the role of a bifunctional coagulation cofactor. Thromb Res 40, 351-358.
O'Brien, P.J., Prevost, N., Molino, M., Hollinger, M.K., Woolkalis, M.J., Woulfe, D.S., and Brass, L.F. (2000). Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem 275, 13502-13509.
Ong, A.T., McFadden, E.P., Regar, E., de Jaegere, P.P., van Domburg, R.T., and Serruys, P.W. (2005). Late angiographic stent thrombosis (LAST) events with drug-eluting stents. J Am Coll Cardiol 45, 2088-2092.
Parry, G.C., and Mackman, N. (1994). A set of inducible genes expressed by activated human monocytic and endothelial cells contain kappa B-like sites that specifically bind c-Rel-p65 heterodimers. J Biol Chem 269, 20823-20825.
Parry, G.C., and Mackman, N. (1995). Transcriptional regulation of tissue factor expression in human endothelial cells. Arterioscler Thromb Vasc Biol 15, 612-621.
Parry, T.J., Brosius, R., Thyagarajan, R., Carter, D., Argentieri, D., Falotico, R., and Siekierka, J. (2005). Drug-eluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries. Eur J Pharmacol 524, 19-29.
Pendurthi, U.R., and Rao, L.V. (2002). Effect of wine phenolics and stilbene analogues on tissue factor expression in endothelial cells. Thromb Res 106, 205-211.
Pendurthi, U.R., Williams, J.T., and Rao, L.V. (1999). Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells : A possible mechanism for the cardiovascular benefits associated with moderate consumption of wine. Arterioscler Thromb Vasc Biol 19, 419-426.
Perera, P.Y., Qureshi, N., and Vogel, S.N. (1996). Paclitaxel (Taxol)-induced NF-kappaB translocation in murine macrophages. Infect Immun 64, 878-884.
Pietta, P.G. (2000). Flavonoids as antioxidants. J Nat Prod 63, 1035-1042.
Rice-Evans, C. (2001). Flavonoid antioxidants. Curr Med Chem 8, 797-807.
Ross, R. (1999). Atherosclerosis--an inflammatory disease. N Engl J Med 340, 115-126.
Roy, P., Bonello, L., Torguson, R., de Labriolle, A., Lemesle, G., Slottow, T.L., Steinberg, D.H., Kaneshige, K., Xue, Z., Satler, L.F., Kent, K.M., Suddath, W.O., Pichard, A.D., Lindsay, J., Waksman, R. (2008). Impact of "nuisance" bleeding on clopidogrel compliance in patients undergoing intracoronary drug-eluting stent implantation. Am J Cardiol 102, 1614-1617.
Sambola, A., Fuster, V., and Badimon, J.J. (2003a). Role of coronary risk factors in blood thrombogenicity and acute coronary syndromes. Rev Esp Cardiol 56, 1001-1009.
Sambola, A., Osende, J., Hathcock, J., Degen, M., Nemerson, Y., Fuster, V., Crandall, J., and Badimon, J.J. (2003b). Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity. Circulation 107, 973-977.
Serradell, M., Diaz-Ricart, M., Cases, A., Zurbano, M.J., Aznar-Salatti, J., Lopez-Pedret, J., Ordinas, A., and Escolar, G. (2001). Uremic medium disturbs the hemostatic balance of cultured human endothelial cells. Thromb Haemost 86, 1099-1105.
Sollott, S.J., Cheng, L., Pauly, R.R., Jenkins, G.M., Monticone, R.E., Kuzuya, M., Froehlich, J.P., Crow, M.T., Lakatta, E.G., Rowinsky, E.K., Kinsella, J.L. (1995). Taxol inhibits neointimal smooth muscle cell accumulation after angioplasty in the rat. J Clin Invest 95, 1869-1876.
Spronk, H.M., van der Voort, D., and Ten Cate, H. (2004). Blood coagulation and the risk of atherothrombosis: a complex relationship. Thromb J 2, 12.
Stahli, B.E., Camici, G.G., Steffel, J., Akhmedov, A., Shojaati, K., Graber, M., Luscher, T.F., and Tanner, F.C. (2006). Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation. Circ Res 99, 149-155.
Stampfuss, J.J., Schror, K., and Weber, A.A. (2005). Green tea catechins containing a galloyl group in the 3' position inhibit tissue factor-induced thrombin generation. Thromb Haemost 93, 1200-1201.
Steffel, J., Latini, R.A., Akhmedov, A., Zimmermann, D., Zimmerling, P., Luscher, T.F., and Tanner, F.C. (2005). Rapamycin, but not FK-506, increases endothelial tissue factor expression: implications for drug-eluting stent design. Circulation 112, 2002-2011.
Steffel, J., Luscher, T.F., and Tanner, F.C. (2006). Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation 113, 722-731.
Stettler, C., Wandel, S., Allemann, S., Kastrati, A., Morice, M.C., Schomig, A., Pfisterer, M.E., Stone, G.W., Leon, M.B., de Lezo, J.S., Goy, J.J., Park, S.J., Sabaté, M., Suttorp, M.J., Kelbaek, H., Spaulding, C., Menichelli, M., Vermeersch, P., Dirksen, M.T., Cervinka, P., Petronio, A.S., Nordmann, A.J., Diem, P., Meier, B., Zwahlen, M., Reichenbach, S., Trelle, S., Windecker, S., Jüni, P. (2007). Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370, 937-948.
Stone, G.W., Moses, J.W., Ellis, S.G., Schofer, J., Dawkins, K.D., Morice, M.C., Colombo, A., Schampaert, E., Grube, E., Kirtane, A.J., Cutlip, D.E., Fahy, M., Pocock, S.J., Mehran, R., Leon, M.B. (2007). Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med 356, 998-1008.
Syed, D.N., Afaq, F., Kweon, M.H., Hadi, N., Bhatia, N., Spiegelman, V.S., and Mukhtar, H. (2007). Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells. Oncogene 26, 673-682.
Vaidyula, V.R., Rao, A.K., Mozzoli, M., Homko, C., Cheung, P., and Boden, G. (2006). Effects of hyperglycemia and hyperinsulinemia on circulating tissue factor procoagulant activity and platelet CD40 ligand. Diabetes 55, 202-208.
van der Wal, A.C., Becker, A.E., van der Loos, C.M., and Das, P.K. (1994). Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89, 36-44.
Viles-Gonzalez, J.F., Fuster, V., and Badimon, J.J. (2004). Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur Heart J 25, 1197-1207.
Vita, J.A. (2003). Tea consumption and cardiovascular disease: effects on endothelial function. J Nutr 133, 3293S-3297S.
Wang, H.J., Huang, H., Chuang, Y.C., and Huang, H.C. (2009). Paclitaxel induces up-regulation of tissue factor in human aortic endothelial cells. Int Immunopharmacol 9, 144-147.
Wang, T.H., Wang, H.S., and Soong, Y.K. (2000). Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 88, 2619-2628.
Wilcox, J.N., Smith, K.M., Schwartz, S.M., and Gordon, D. (1989). Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci U S A 86, 2839-2843.
Williams, R.J., Spencer, J.P., and Rice-Evans, C. (2004). Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36, 838-849.
Windecker, S., Remondino, A., Eberli, F.R., Juni, P., Raber, L., Wenaweser, P., Togni, M., Billinger, M., Tuller, D., Seiler, C., Roffi, M., Corti, R., Sütsch, G., Maier, W., Lüscher, T., Hess, O.M., Egger, M., Meier, B. (2005). Sirolimus-eluting and paclitaxel-eluting stents for coronary revascularization. N Engl J Med 353, 653-662.
Wolfram, S. (2007). Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr 26, 373S-388S.
Zhang, L., Zalewski, A., Liu, Y., Mazurek, T., Cowan, S., Martin, J.L., Hofmann, S.M., Vlassara, H., and Shi, Y. (2003). Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation 108, 472-478.
Zumbach, M., Hofmann, M., Borcea, V., Luther, T., Kotzsch, M., Muller, M., Hergesell, O., Andrassy, K., Ritz, E., Ziegler, R., Wahl, P., Nawroth, P.P. (1997). Tissue factor antigen is elevated in patients with microvascular complications of diabetes mellitus. Exp Clin Endocrinol Diabetes 105, 206-212.