研究生: |
林世昌 Shih-Chang Lin |
---|---|
論文名稱: |
比較SV40驅動和IRES驅動二氫葉酸還原酶的載體在CHO細胞工程中基因放大的差異性 Comparing the Difference of Gene Amplification between SV40-driven dhfr and IRES-driven dhfr Vectors in CHO Cell chromosome Engineering |
指導教授: |
吳夙欽
Suh-Chin Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 基因放大 、中國倉鼠卵巢細胞 、急性嚴重呼吸道症候群 、棘蛋白質 、次單位疫苗 、二氫葉酸還原脢 |
外文關鍵詞: | gene amplification, CHO cell, SARS, spike protein, subunit vaccine, dihydrofolate reductase |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
S蛋白在疫苗的研發上扮演了很重要的角色。已知截短的SARS-CoV TW1 病毒株之棘蛋白─ 「STR2」(包含有三個S蛋白片段:S74-253、S294-739和S1129-1255,分子量為88 kDa)可在哺乳動物細胞中被表現出來,其表現主要為以對Endo H酵素敏感的醣蛋白形式(~115 kDa)。為了建立可穩定大量表現STR2蛋白之CHO細胞,這份研究使用了由兩種不同方式驅動dhfr基因表現的載體:ISID由internal ribosome entry site (IRES)驅動dhfr基因,ISIZ由SV40啟動子驅動dhfr基因。逐步提高Methotrexate (MTX)濃度讓STR2基因數伴隨dhfr基因在染色體中放大以期大量表現STR2蛋白,並比較利用兩種載體產生的基因數放大的差異。這份研究除了篩選出STR2表現量高的細胞株作為生產次單元疫苗的利器,並可作為未來設計可放大載體的參考。
哺乳動物細胞因其有轉譯後修飾作用,可以增加重組蛋白的療效、穩定度等,在生技製藥上常被用來生產重組蛋白,又因CHO細胞表現系統可以利用dihydrofolate reductase (dhfr)基因放大來增加產量,因此最被廣泛使用,這份研究即是利用CHO細胞表現嚴重急性呼吸道症候群冠狀病毒(SARS-CoV)的套膜Spike重組蛋白(S蛋白)。
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is important for vaccine development. A truncated SARS-CoV TW1 S protein, STR2 (88 kDa), carrying three S fragments (S-74-253, S-294-739, and S-1129-1255) could express and show the major form as the Endo H-sensitive (~115 kDa) in CHO cells. To establish stably expressing cell clones, the CHO/dhFr- cells were transfected with two amplifiable vectors, ISID (IRES-driven dhfr) and ISIZ (SV40-driven dhfr), for stepwise MTX selection. The enhancement of the ~115 kDa glycoform generation was observed through gene amplification. After stepwise MTX selection, we can compare the difference of gene amplification between the two vectors in CHO cell chromosome engineering. This study can provide information for development of mammalian cell-based SARS-CoV subunit vaccines, and for amplifiable vectors design to produce recombinant proteins.
Because post-translational modification could improve the efficiency and stability of the recombinant proteins in mammalian cells, mammalian cells are the most common used as host cells to produce biopharmaceuticals. CHO cells, which can amplify target gene following dhfr gene amplification to increase productivity, are used as host cells in this study.
(2005). First Phase II AIDS vaccine trial begins in South Africa. IAVI Rep 9(5), 19.
Ailor, E., and Betenbaugh, M. J. (1998). Overexpression of a cytosolic chaperone to improve solubility and secretion of a recombinant IgG protein in insect cells. Biotechnol Bioeng 58(2-3), 196-203.
Antoniou, M., Harland, L., Mustoe, T., Williams, S., Holdstock, J., Yague, E., Mulcahy, T., Griffiths, M., Edwards, S., Ioannou, P. A., Mountain, A., and Crombie, R. (2003). Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics 82(3), 269-79.
Assaraf, Y. G., and Schimke, R. T. (1987). Identification of methotrexate transport deficiency in mammalian cells using fluoresceinated methotrexate and flow cytometry. Proc Natl Acad Sci U S A 84(20), 7154-8.
Babcock, G. J., Esshaki, D. J., Thomas, W. D., Jr., and Ambrosino, D. M. (2004). Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol 78(9), 4552-60.
Berg, D. T., McClure, D. B., Walls, J. D., Yan, S. B., and Grinnell, B. W. (1991). Viral transformation increases vitamin K-dependent gamma-carboxylation of glutamate. Exp Cell Res 192(1), 32-40.
Bisht, H., Roberts, A., Vogel, L., Bukreyev, A., Collins, P. L., Murphy, B. R., Subbarao, K., and Moss, B. (2004). Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 101(17), 6641-6.
Borghei, A., Ouyang, Y. B., Westmuckett, A. D., Marcello, M. R., Landel, C. P., Evans, J. P., and Moore, K. L. (2006). Targeted disruption of tyrosylprotein sulfotransferase-2, an enzyme that catalyzes post-translational protein tyrosine O-sulfation, causes male infertility. J Biol Chem 281(14), 9423-31.
Brazzoli, M., Helenius, A., Foung, S. K., Houghton, M., Abrignani, S., and Merola, M. (2005). Folding and dimerization of hepatitis C virus E1 and E2 glycoproteins in stably transfected CHO cells. Virology 332(1), 438-53.
Buchholz, U. J., Bukreyev, A., Yang, L., Lamirande, E. W., Murphy, B. R., Subbarao, K., and Collins, P. L. (2004). Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A 101(26), 9804-9.
Chang, C. Y., Hong, W. W., Chong, P., and Wu, S. C. (2006). Influence of intron and exon splicing enhancers on mammalian cell expression of a truncated spike protein of SARS-CoV and its implication for subunit vaccine development. Vaccine 24(8), 1132-41.
Chen, K., Liu, Q., Xie, L., Sharp, P. A., and Wang, D. I. (2001). Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production. Biotechnol Bioeng 72(1), 55-61.
Cleland, J. L., and Craik, C. S. (1996). Expression of Engineered Proteins in Mammalian Cell Culture. Protein Engineering: Principles and Practice, 163-181.
Cruz, H. J., Moreira, J. L., and Carrondo, M. J. (2000). Metabolically optimised BHK cell fed-batch cultures. J Biotechnol 80(2), 109-18.
Cuvier, O., Hart, C. M., Kas, E., and Laemmli, U. K. (2002). Identification of a multicopy chromatin boundary element at the borders of silenced chromosomal domains. Chromosoma 110(8), 519-31.
Dinnis, D. M., and James, D. C. (2005). Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature? Biotechnol Bioeng 91(2), 180-9.
Dorner, A. J., and Kaufman, R. J. (1994). The levels of endoplasmic reticulum proteins and ATP affect folding and secretion of selective proteins. Biologicals 22(2), 103-12.
Ellgaard, L., and Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3), 181-91.
Fogolin, M. B., Wagner, R., Etcheverrigaray, M., and Kratje, R. (2004). Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF-producing CHO cells. J Biotechnol 109(1-2), 179-91.
Haber, D. A., Beverley, S. M., Kiely, M. L., and Schimke, R. T. (1981). Properties of an altered dihydrofolate reductase encoded by amplified genes in cultured mouse fibroblasts. J Biol Chem 256(18), 9501-10.
He, Y., Zhou, Y., Liu, S., Kou, Z., Li, W., Farzan, M., and Jiang, S. (2004). Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun 324(2), 773-81.
Holzer, G. W., Mayrhofer, J., Leitner, J., Blum, M., Webersinke, G., Heuritsch, S., and Falkner, F. G. (2003). Overexpression of hepatitis B virus surface antigens including the preS1 region in a serum-free Chinese hamster ovary cell line. Protein Expr Purif 29(1), 58-69.
Izumi, M., and Gilbert, D. M. (1999). Homogeneous tetracycline-regulatable gene expression in mammalian fibroblasts. J Cell Biochem 76(2), 280-9.
Jacquet, A., Haumont, M., Massaer, M., Garcia, L., Mazzu, P., Daminet, V., Gregoire, D., Jacobs, P., and Bollen, A. (2002). Immunogenicity of a recombinant varicella-zoster virus gE-IE63 fusion protein, a putative vaccine candidate against primary infection and zoster reactivation. Vaccine 20(11-12), 1593-602.
Johansen, B., Kramer, R. M., Hession, C., McGray, P., and Pepinsky, R. B. (1992). Expression, purification and biochemical comparison of natural and recombinant human non-pancreatic phospholipase A2. Biochem Biophys Res Commun 187(1), 544-51.
Joseph Sambrook, D. W. R. (2001). Introducing Cloned Genes into Cultured Mammalian Cells. In "Molecular Cloning" (D. W. R. Joseph Sambrook, Ed.), Vol. 3, pp. 16.1-16.61. Cold Spring Harbor Laboratory Press, New York.
Kaufman, R. J., and Schimke, R. T. (1981). Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line. Mol Cell Biol 1(12), 1069-76.
Kim, J. M., Kim, J. S., Park, D. H., Kang, H. S., Yoon, J., Baek, K., and Yoon, Y. (2004). Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol 107(2), 95-105.
Kleizen, B., and Braakman, I. (2004). Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16(4), 343-9.
Konishi, E., and Fujii, A. (2002). Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. Vaccine 20(7-8), 1058-67.
Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A. E., Humphrey, C. D., Shieh, W. J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., DeRisi, J., Yang, J. Y., Cox, N., Hughes, J. M., LeDuc, J. W., Bellini, W. J., and Anderson, L. J. (2003). A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20), 1953-66.
Kwaks, T. H., Barnett, P., Hemrika, W., Siersma, T., Sewalt, R. G., Satijn, D. P., Brons, J. F., van Blokland, R., Kwakman, P., Kruckeberg, A. L., Kelder, A., and Otte, A. P. (2003). Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat Biotechnol 21(5), 553-8.
Lasunskaia, E. B., Fridlianskaia, II, Darieva, Z. A., da Silva, M. S., Kanashiro, M. M., and Margulis, B. A. (2003). Transfection of NS0 myeloma fusion partner cells with HSP70 gene results in higher hybridoma yield by improving cellular resistance to apoptosis. Biotechnol Bioeng 81(4), 496-504.
Lowe, J. B., and Marth, J. D. (2003). A genetic approach to Mammalian glycan function. Annu Rev Biochem 72, 643-91.
Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M., McDonald, H., Montgomery, S. B., Pandoh, P. K., Petrescu, A. S., Robertson, A. G., Schein, J. E., Siddiqui, A., Smailus, D. E., Stott, J. M., Yang, G. S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T. F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G. A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R. C., Krajden, M., Petric, M., Skowronski, D. M., Upton, C., and Roper, R. L. (2003). The Genome sequence of the SARS-associated coronavirus. Science 300(5624), 1399-404.
Merrihew, R. V., Sargent, R. G., and Wilson, J. H. (1995). Efficient modification of the APRT gene by FLP/FRT site-specific targeting. Somat Cell Mol Genet 21(5), 299-307.
Omasa, T. (2002). Gene amplification and its application in cell and tissue engineering. J Biosci Bioeng 94(6), 600-5.
Ou, W. J., Cameron, P. H., Thomas, D. Y., and Bergeron, J. J. (1993). Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364(6440), 771-6.
Park, M. H., and Folk, J. E. (1986). Biosynthetic labeling of hypusine in mammalian cells. Carbon-hydrogen bond fissions revealed by dual labeling. J Biol Chem 261(30), 14108-11.
Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng, T. K., and Yuen, K. Y. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361(9366), 1319-25.
Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K., Chen, M. H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J. L., Chen, Q., Wang, D., Erdman, D. D., Peret, T. C., Burns, C., Ksiazek, T. G., Rollin, P. E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A. D., Drosten, C., Pallansch, M. A., Anderson, L. J., and Bellini, W. J. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300(5624), 1394-9.
Sauer, P. W., Burky, J. E., Wesson, M. C., Sternard, H. D., and Qu, L. (2000). A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol Bioeng 67(5), 585-97.
Sauerwald, T. M., Betenbaugh, M. J., and Oyler, G. A. (2002). Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnol Bioeng 77(6), 704-16.
Schimke, R. T., Alt, F. W., Kellems, R. E., Kaufman, R. J., and Bertino, J. R. (1978). Amplification of dihydrofolate reductase genes in methotrexate-resistant cultured mouse cells. Cold Spring Harb Symp Quant Biol 42 Pt 2, 649-57.
Seidah, N. G., and Chretien, M. (1997). Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotechnol 8(5), 602-7.
Shaffer, A. L., Shapiro-Shelef, M., Iwakoshi, N. N., Lee, A. H., Qian, S. B., Zhao, H., Yu, X., Yang, L., Tan, B. K., Rosenwald, A., Hurt, E. M., Petroulakis, E., Sonenberg, N., Yewdell, J. W., Calame, K., Glimcher, L. H., and Staudt, L. M. (2004). XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21(1), 81-93.
Siminovitch, L. (1976). On the nature of hereditable variation in cultured somatic cells. Cell 7(1), 1-11.
Song, H. C., Seo, M. Y., Stadler, K., Yoo, B. J., Choo, Q. L., Coates, S. R., Uematsu, Y., Harada, T., Greer, C. E., Polo, J. M., Pileri, P., Eickmann, M., Rappuoli, R., Abrignani, S., Houghton, M., and Han, J. H. (2004). Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol 78(19), 10328-35.
Spiga, O., Bernini, A., Ciutti, A., Chiellini, S., Menciassi, N., Finetti, F., Causarono, V., Anselmi, F., Prischi, F., and Niccolai, N. (2003). Molecular modelling of S1 and S2 subunits of SARS coronavirus spike glycoprotein. Biochem Biophys Res Commun 310(1), 78-83.
Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H. D., and Rappuoli, R. (2003). SARS--beginning to understand a new virus. Nat Rev Microbiol 1(3), 209-18.
Tey, B. T., Singh, R. P., Piredda, L., Piacentini, M., and Al-Rubeai, M. (2000). Influence of bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng 68(1), 31-43.
Trill, J. J., Shatzman, A. R., and Ganguly, S. (1995). Production of monoclonal antibodies in COS and CHO cells. Curr Opin Biotechnol 6(5), 553-60.
Trombetta, E. S., and Parodi, A. J. (2003). Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 19, 649-76.
Tucker, D. E., Stewart, A., Nallan, L., Bendale, P., Ghomashchi, F., Gelb, M. H., and Leslie, C. C. (2005). Group IVC cytosolic phospholipase A2gamma is farnesylated and palmitoylated in mammalian cells. J Lipid Res 46(10), 2122-33.
Walsh, G. (2003). Biopharmaceutical benchmarks--2003. Nat Biotechnol 21(8), 865-70.
Ware, F. E., Vassilakos, A., Peterson, P. A., Jackson, M. R., Lehrman, M. A., and Williams, D. B. (1995). The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 270(9), 4697-704.
Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11), 1393-8.
Xiao, X., Chakraborti, S., Dimitrov, A. S., Gramatikoff, K., and Dimitrov, D. S. (2003). The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun 312(4), 1159-64.
Yount, B., Curtis, K. M., Fritz, E. A., Hensley, L. E., Jahrling, P. B., Prentice, E., Denison, M. R., Geisbert, T. W., and Baric, R. S. (2003). Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 100(22), 12995-3000.
Zhang, H., Wang, G., Li, J., Nie, Y., Shi, X., Lian, G., Wang, W., Yin, X., Zhao, Y., Qu, X., Ding, M., and Deng, H. (2004). Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol 78(13), 6938-45.
Zhou, Z., Post, P., Chubet, R., Holtz, K., McPherson, C., Petric, M., and Cox, M. (2006). A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. Vaccine 24(17), 3624-31.