簡易檢索 / 詳目顯示

研究生: 陳彥宏
論文名稱: Semiparametric Tests for Nonstationary Data
非平穩資料的半參數檢定
指導教授: 徐南蓉
口試委員: 郭美惠
黃信誠
蔡恆修
洪志真
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 86
中文關鍵詞: NonstationarityGeneralized Likelihood Ratio TestLocally StationaryVarying-Coefficient Fractional Integrated ModelANOVA TestEvolutionary SpectraFrequency Domain
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we study the empirical performance of the ANOVA test (Priestley and Subba Rao, 1969) and propose two semiparametric tests for stationarities in time series and spatial processes based on the generalized likelihood ratio test (Fan et al., 2001) in the frequency domain.

    We provide suggestions and guidelines for the bandwidth selection in the construction of evolutionary spectra estimator. The advantages and disadvantages of the ANOVA test are studied. In addition, we also provide specific comments on the types of evolutionary spectra estimators to be used under different situations.

    The test of stationarity in time series is built on the varying-coefficient fractional exponential model, which is time-adapted from the fractional exponential model of Beran (1993). The proposed test is capable of testing both long-memory and short-memory processes individually or jointly. With the bootstrapped null distribution, this test shows good power performance and satisfactory test sizes in our simulation study.

    In the test for spatial nonstationarity, we mainly focus on the isotropic processes. Under similar algorithm to that in the time series test, the simulated results show that a possible direction for enhancement will be on the basis system selection.


    在本論文中,我們針對Priestley and Subba Rao (1969) 之ANOVA檢定能力進行實務研究,並在頻譜域中利用Fan et al. (2001) 的廣義概似比檢定 (generalized likelihood ratio test,GLR Test) 提出兩種關於時間序列與空間過程的平穩性檢定方法。 我們提出建構演化譜密度 (evolutionary spectra) 估計量的頻寬選擇指南與建議,並研究該ANOVA檢定法的優缺點。此外,我們亦分析各不同譜密度估計量的適用情形。 在時間序列的平穩性檢定中,我們採用了對Beran (1993) 的分數指數模型 (fractional exponential model) 係數賦予時間變動性而得到的變動時間係數之分數指數模型 (varying-coefficient fractional exponential model) 以建構對立假設。以此模型所得到之GLR檢定可獨自或同時針對長距記憶 (long-memory) 與短距記憶 (short-memory) 過程之平穩性做驗證。模擬與實例分析結果顯示,在使用拔靴法 (bootstrap) 所造出之檢定量虛無分佈下此檢定法具備準確的檢定大小 (test size) 以及良好的檢定力。 而對於空間過程的平穩性檢定,我們主要針對等向性 (isotropic) 空間過程。在和時間序列的GLR檢定相似的方法下,模擬結果顯示在基底系統的選擇上有改善的空間。

    Chapter 1 Introduction Chapter 2 Background 2.1 Spectral Analysis for Random Processes 2.1.1 Spectral Analysis for Time Series 2.1.2 Spectral Analysis for Spatial Data 2.2 Exponential and Fractional Exponential Models 2.3 Semiparametric Spatial Models 2.4 Generalized Likelihood Ratio Test Chapter 3 Empirical Study for ANOVA Test of Nonstationarity 3.1 ANOVA Test and Evolutionary Spectrum Estimator 3.2 Numerical Analysis Chapter 4 Test for Time Data 4.1 Introduction 4.2 Varying-Coefficient FEXP Models 4.3 Nonstationary Test in Log-Periodogram Regression 4.3.1 Log-Periodogram Regression 4.3.2 Local Polynomial Fitting in a VC-FEXP Model 4.3.3 Test Statistic 4.3.4 A Bootstrap Procedure 4.4 Simulation and Numerical Results 4.4.1 Size and Power 4.4.2 Comparisons with ANOVA Test 4.5 A Real Example 4.6 Summary Chapter 5 Test for Spatial Data 5.1 Introduction 5.2 Semiparametric Spatial Models 5.2.1 Model Specification 5.2.2 Hypotheses 5.3 Generalized Likelihood Ratio Test 5.3.1 Spectrum Estimator 5.3.2 Model Fitting 5.3.3 Test Statistics 5.4 Simulation Study 5.5 Conclusion Chapter 6 Future Work 6.1 Principal Component Basis 6.2 Fitting Approaches 6.3 Spatial-Temporal Data: Nonstationarity or Nonseparability? References

    Adak, S. (1998), Time-Dependent Spectral Analysis of Nonstationary Time Series. Journal of the American Statistical Association. 93, 1488-1501.
    Beran, J. (1992), A Goodness-of-Fit Test for Time Series with Long-Range Dependence. Journal of the Royal Statistical Society - Series B. 54, 749-760.
    Beran, J. (1993), Fitting Long-Memory Models by Generalized Linear Regression. Biometrika. 80, 817-822.
    Beran, J. (2009), On Parameter Estimation for Locally Stationary Long-Memory Processes. Journal of Statistical Planning and Inference. 139, 900-915.
    Beran, J. and Terrin, N. (1996), Testing for a Change of the Long-Memory Parameter. Biometrika. 83, 627-638.
    Bloom eld, P. (1973), An Exponential Model for the Spectrum of a Scalar Time Series. Biometrika. 60, 217-226.
    Bochner, S. (1936), Lectures on Fourier Analysis, Princeton University Press, Princeton.
    Bose, S. and Steinhardt, A. O. (1996), Invariant Tests for Spatial Stationarity Using Covariance Structure. IEEE Transactions on Signal Processing. 44, 1523-1533.
    Boutahar, M., Dufrenot, G. and Peguin-Feissolle, A. (2008), A Simple Fractionally Integrated Model with a Time-varying Long Memory Parameter dt. Computational Economics. 31,
    225-241.
    Box, G. and Jenkins, G. (1970), Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco.
    Brillinger, D. R. (1981), Time Series: Data Analysis and Theory (Expanded Ed.), Holden-Day, San Francisco.
    Bronez, T. P. (1988), Spectral Estimation of Irregularly Sampled Multidimensional Processes by Generalized Prolate Spheroidal Sequences. IEEE Transactions on Acoustics, Speech, and Signal Processing. 36, 1862-1873.
    Cai, Z., Fan, J. and Yao, Q. (2000), Functional-Coecient Regression Models for Nonlinear Time Series. Journal of the American Statistical Association. 95, 941-956.
    Chang, C. and Morettin, P. (1999), Estimation of Time Varying Linear Systems. Statistical Inference for Stochastic Processes. 2, 253-285.
    Cressie, N. (1993), Statistics for Spatial Data, John Wiley, New York.
    Dahlhaus, R. (1996), On the Kullback-Leibler Information Divergence of Locally Stationary Processes. Stochastic Processes and their Applications. 62, 139-168.
    Dahlhaus, R. (1997), Fitting Time Series Models to Nonstationary Processes. The Annals of Statistics. 25, 1-37.
    Dahlhaus, R., Neumann, M.H. and von Sachs, R. (1999), Nonlieanr Wavelet Estimation of Time-Varying Autoregressive Processes. Bernoulli. 5, 873-906.
    Diggle, P. J. and Wasel, I. (1997), Spectral Analysis of Replicated Biomedical Time Series. Journal of the Royal Statistical Society - Series C. 46, 31-71.
    Ephraty, A., Tabrikian, H., and Messer, H. (2001), Underwater Source Detection Using a Spatial Stationary Test. Journal of Acoustic Society of American. 109, 1053-1063.
    Fan, J. (1993), Local Linear Regression Smoothers and Their Minimax Eciencies. The Annals of Statistics. 21, 196-216.
    Fan, J. and Zhang, W. (2004), Generalised Likelihood Ratio Tests for Spectral Density. Biometrika. 91, 195-209.
    Fan, J., Zhang, C. and Zhang, J. (2001), Generalized Likelihood Ratio Statistics and Wilks Phenomenon. The Annals of Statistics. 29, 153-193.
    Fuentes, M. (2002), Spectral Methods for Nonstationary Spatial Processes, Biometrika. 89, 197-210.
    Fuentes, M. (2005), A Formal Test for Nonstationarity of Spatial Stochastic Processes. Journal of Multivariate Analysis. 96, 30-54.
    Fuentes, M. (2006), Testing for Separability of Spatial-temporal Covariance Functions, Journal of Statistical Planning and Inference. 136, 447-466.
    Fuentes, M. (2007), Approximate Likelihood for Large Irregularly Spaced Spatial Data. Journal of the American Statistical Association. 102, 321-331.
    Fuentes M, and Reich B. (2010), Spectral Domain. Handbook of Spatial Statistics (Gelfand, A., et al. Ed.). CRC Press.
    Geweke, J.F. and Porter-Hudak, S. (1983), The Estimation and Application of Long Memory Time Series Models. Journal of Time Series Analysis. 4, 221-238.
    Gil-Alana, L. A. (2001), A Fractionally Integrated Exponential Model for UK Unemployment. Journal of Forecasting. 20, 329-340.
    Giraitis, L. and Leipus, R. (1992), Testing and Estimating in the Change-Point Problem for the Spectral Function. Lithuanian Mathematical Journal. 32, 20-38.
    Giraitis, L. and Leipus, R. (1994), A Posterior and Sequential Methods of Change-Point Detection in FARMA-type Time Series. In Probability Theory and Mathematical Statistics (Grigelionis B., et al. Ed.), 1-12, Netherlands; VSP.
    Giraitis,L., Leipus, R., and Surgailis, D. (1996), The Change-Point Problem for Dependent Observations, Journal of the Ststistical Planning and Inference. 53, 297-310.
    Guo, W., Dai, M., Ombao, H.C. and von Sachs, R. (2003), Smoothing Spline ANOVA for Time-Dependent Spectral Analysis. Journal of the American Statistical Association. 98, 643-652.
    Haas, T. C. (1990), Lognormal and Moving Window Methods of Estimating Acid Deposition, Journal of the American Statistical Association. 85, 950-963.
    Haas, T. C. (1995), Local Prediction of a Spatio-Temporal Process with an Application to Wet Sulfate Deposition, Journal of the American Statistical Association. 90, 1189-1199.
    Hastie, T. and Tibshirani, R. (1993), Varying-Coecient Models, Journal of the Royal Statistical Society - Series B. 55, 757-796.
    Hawkins, D. (2001), Fitting Multiple Change-Point Models to Data, Computational Statistics and Data Analysis. 37, 323-341.
    Higdon D. (2002), Space and Space-Time Modeling Using Process Convolutions, in Quantitative Methods for Current Environmental Issues (Anderson, C., et al. Ed.), 37-54, Springer, London
    Higdon, D. M., Swall, J. and Kern, J. (1999), Non-Stationary Spatial Modeling. Bayesian Statistics 6. Proceedings of the Sixth Valencia International Meeting, 761-768.
    Hurvich, C. M. and Brodsky, J. (2001), Broadband Semiparametric Estimation of the Memory Parameter of a Long-Memory Time Series Using Fractional Exponential Models. Journal of Time Series Analysis. 22, 221-249.
    Inclan, C. and Tiao, G. C. (1994), Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance. Journal of the American Statistical Association. 89, 427, 913-923.
    Jensen, M. J. and Whitcher, B. (2000), Time-Varying Long Memory in Volatility: Detection and Estimation with Wavelets. Technical report, EURANDOM.
    Jun, M., Genton, M. G. (2010), A Test for Stationarity of Spatio-Temporal Random Fields on Planar and Spherical Domains. IAMCS preprint series 2010-169. Accepted for publication at Statistica Sinica.
    Khintchine, A. (1934), Korrelationtheorie der Stationaren Prozesse. Mathematische Annalen. 109, 604-615.
    Lavielle, M. and Moulines, E. (2000), Least-Squares Estimation of a Unknown Number of Shifts in a Time Series. Journal of Time Series Analysis. 21, 33-59.
    Loeve, M. (1945), Sur les Fonctions Aleatoires Stationnaires de Second Ordre. Rev. Sci. Paris. 83, 297.
    Matern, B. (1986), Spatial Variation (2nd Ed.), Springer-Verlag, New York.
    Mateu, J. and Juan, P. (2004), A Spectral Test of Nonstationarity for Spatial Processes. Quantitative Geology and Geostatistics. 12, 213-224.
    Moulines, E. and Soulier, P. (1999), Broadband Log-Periodogram Regression of Time Series with Long-Range Dependence. The Annals of Statistics. 27, 1415-1439.
    Moulines, E. and Soulier, P. (2000), Data Driven Order Selection for Projection Estimator of the Spectral Density of Time Series with Long Memory Dependence. Journal of Time Series Analysis. 21, 193-218.
    Nason, G., von Sachs, R. and Kroisandt, G. (2000), Wavelet Processes and Adaptive Estimation of the Evolutionary Wavelet Spectrum. Journal of the Royal Statistical Society - Series B. 62, 271-292.
    Nychka, D., Wikle, C. and Royle, J. A. (2002), Multiresolution Models for Nonstationary Spatial Covariance Functions. Statistical Modelling. 2, 315-332.
    Ombao, H., Raz, J., von Sachs, R. and Guo, W. (2002), The SLEX Model of a Non-Stationary Random Process. Annals of the Institute of Statistical Mathematics. 54, 171-200.
    Ombao, H., von Sachs, R. and Guo, W. (2005), SLEX Analysis of Multivariate Non-Stationary Time Series, Journal of the American Statistical Association. 100, 519-531.
    Paciorek, C. (2003), Nonstationary Gaussian Processes for Regression and Spatial Modelling, unpublished Ph.D. dissertation, Carnegie Mellon University, Department of Statistics.
    Paciorek, C. J. and Schervish, M. J. (2004), Nonstationary Covariance Functions for Gaussian Process Regression. Advances in Neural Information Processing Systems. 16, 273-280.
    Paciorek, C. J. and Schervish, M. J. (2006), Spatial Modelling Using a New Class of Nonstationary Covariance Functions. Environmetrics. 17, 483-506.
    Paparoditis, E. (2009), Testing Temporal Constancy of the Spectral Structure of a Time Series, Bernoulli. 15, 1190-1221.
    Paparoditis, E. (2010), Validating Stationarity Assumptions in Time Series Analysis by Rolling Local Periodograms. Journal of the American Statistical Association. 105, 839-851.
    Pintore, A. and Holmes, C. (2007), Spatially Adaptive Non-Stationary Covariance Functions via Spatially Adaptive Spectra, available at http://www.stats.ox.ac.uk/echolmes/Reports/spectral tempering.pdf.
    Priestley, M. B. (1965), Evolutionary Spectra and Nonstationary Processes. Journal of the Royal Statistical Society - Series B. 27, 204-237.
    Priestley, M.B. (1966), Design Relations for Non-stationary Processes, Journal of the Royal Statistical Society - Series B. 28, 228-240.
    Priestley, M. B. (1981), Spectral Analysis and Time Series, Academic Press, London.
    Priestley, M. B. and Subba Rao, T. (1969), A Test for Non-Stationarity of Time-Series. Journal of the Royal Statistical Society - Series B. 31, 140-149.
    Ray, B. and Tsay, R.S. (2002), Bayesian Methods for Change-Point Detection in Long-Range Dependent Processes, Journal of Time Series Analysis. 23, 687-705.
    Robinson, P. M. (1994), Ecient Tests of Nonstationary Hypotheses. Journal of the American Statistical Association. 89, 1420-1437.
    Robinson, P. M. (1995a), Gaussian Semiparametric Estimation of Long Range Dependence. The Annals of Statistics. 23, 1630-1661.
    Robinson, P. M. (1995b), Log-Periodogram Regression of Time Series with Long Range Dependence. The Annals of Statistics. 23, 1048-1072.
    Sakiyama, K. and Taniguchi, M. (2003), Testing Composite Hypotheses for Locally Stationary Processes. Journal of Time Series Analysis. 24, 483-504.
    Sampson, P. and Guttorp, P. (1992), Nonparametric Estimation of Nonstationary Spatial Covariance Structure. Journal of the American Statistical Association. 87, 108-119.
    Schabenberger, O. and Gotway, C. A. (2005), Statistical Methods for Spatial Data Analysis. Chapman and Hall/CRC, Boca Raton.
    Sergides, M. and Paparoditis, E. (2009), Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes. Scandinavian Journal of Statistics. 36, 800-821.
    Smith, R. L. (1996), Estimating Nonstationary Spatial Correlations, Preprint, University of North Carolina.
    Stein, M. L., Chi, Z., and Welty, L. (2004), Approximating Likelihoods for Large Spatial Data Sets. Journal of the Royal Statistical Society, Series - B. 66, 275-296.
    Stein, M. L. (2005), Nonstationary Spatial Covariance Functions. Technical report, University of Chicago.
    Stephenson, J. Holmes, C., Gallagher, K. and Pintore, A. (2005), A Technique for Modelling Non-Stationary Spatial Processes, Geostatistics Ban 2004, Quantitative Geology and Geophysics (Clayton V. Ed.). 14. Leuangthong, Oy; Deutsch.
    Subba Rao, S. (2008), Statistical Analysis of a Spatio-Temporal Model with Location Dependent Parameters and a Test for Spatial Stationarity. Journal of Time Series Analysis. 29, 673-694.
    Vecchia, A. V. (1988), Estimation and Model Identi cation for Continuous Spatial Processes. Journal of the Royal Statistical Society - Series B. 50, 297-312.
    Wiener, N. (1930), Generalised Harmonic Analysis. Acta Mathematica. 55, 117-258.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE