簡易檢索 / 詳目顯示

研究生: 周成澤
Chou, Cheng-Tse
論文名稱: 二碲化鎢的合成與性質探討
Synthesis and Characterization of Tungsten Ditelluride
指導教授: 李奕賢
Lee, Yi-Hsien
口試委員: 陳永富
張哲豪
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 69
中文關鍵詞: 二碲化鎢化學氣相沉積法磁阻
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要著重在二碲化鎢(WTe2)的合成機制以及性質的探討。二碲化鎢由於其特殊的結構以及在低溫高磁場下具有不飽和的巨大磁阻特性因而受到重視,本研究利用化學氣相沉積法(CVD)合成WTe2,並透過不同參數的調控來觀察對材料生長的影響,包含不同的鹼金屬鹵化物、基板的種類、還原氣氛(氫氣)以及反應物的位置等,進一步優化實驗的參數而獲得大面積的二碲化鎢,最後做成元件並量測到目前透過CVD方法取得的二碲化鎢中,最高的磁阻效應。


    In this research, we focus on the growth mechanism and the physical properties of tungsten telluride. Tungsten telluride have attracted tremendous interests recently due to its unique structure and large non-saturating magnetoresistance properties. Here we demonstrate a CVD method to directly synthesize large scale WTe2.The high quality of few layer WTe2 was confirmed via optical microscopy, atomic force microscopy(AFM) and Raman spectroscopy. And finally our device exhibited an excellent magnetoresistance compared with previous study.

    目錄 1 圖目錄 3 第一章 緒論 5 第二章 文獻回顧 7 2-1 過渡金屬硫族化合物 7 2-1-1 晶體結構 7 2-1-2 能帶結構 9 2-1-3 磁阻特性 11 2-1-4 相變化特性 12 2-2 過渡過渡金屬硫族化合物製備方法 12 2-2-1 機械剝離法 12 2-2-2 化學離子插層 13 2-2-3 物理氣相沉積法 13 2-2-4 化學氣相傳輸法 14 2-2-5 化學氣相沉積法 14 2-3 化學氣相沉積法合成二維材料的重要參數 15 2-3-1 溫度 15 2-3-2 還原氣氛對結晶影響 16 2-3-3 化學反應途徑對材料生長的影響 16 2-4 二維材料分析與檢測 19 2-4-1 拉曼光譜分析 19 2-4-2 二次諧振波(Second Harmonic Generation, SHG) 21 第三章 實驗方法 31 3-1 實驗大綱 31 3-2 實驗系統 31 3-2-1 試片處理 31 3-2-2 實驗步驟 31 3-3 材料分析與量測 33 3-3-1 光學顯微鏡 33 3-3-2 拉曼光譜分析 33 3-3-3 二次諧振波量測 33 3-3-4 表面形貌與厚度分析 34 3-3-5 X光光電子能譜儀 34 3-3-6 電性量測 34 3-3-7 磁阻量測 35 第四章 二碲化鎢的合成與分析 38 4-1 製程參數對二碲化鎢生長影響 38 4-1-1 鹼金屬鹵化物對材料生長的影響 38 4-1-2 基板種類對生長影響 40 4-1-3 還原氣氛(氫氣) 41 4-1-4 Te 反應物進入的時間 42 4-1-5 持溫時間 43 4-1-6 總結 44 4-2 二碲化鎢的磁阻量測以及光學分析 45 4-2-1 材料的穩定性 45 4-2-2 磁阻量測結果 45 4-2-3 偏振拉曼分析與SHG 46 第五章 結論 61 附錄: 期刊發表(與研究獲獎) 62 第六章 參考文獻 63

    Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
    2. Lee, C., et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388.
    3. Cooper, D.R., et al., Experimental Review of Graphene. ISRN Condensed Matter Physics, 2012. 2012: p. 56.
    4. Mak, K.F., et al., Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805.
    5. Pu, J., et al., Highly Flexible MoS2 Thin-Film Transistors with Ion Gel Dielectrics. Nano Letters, 2012. 12(8): p. 4013-4017.
    6. Chang, H.-Y., et al., High-Performance, Highly Bendable MoS2 Transistors with High-K Dielectrics for Flexible Low-Power Systems. ACS Nano, 2013. 7(6): p. 5446-5452.
    7. Salvatore, G.A., et al., Fabrication and Transfer of Flexible Few-Layers MoS2 Thin Film Transistors to Any Arbitrary Substrate. ACS Nano, 2013. 7(10): p. 8809-8815.
    8. Gong, C., et al., Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters, 2013. 103(5): p. 053513.
    9. Gong, C., et al., Erratum: “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors” [Appl. Phys. Lett. 103, 053513 (2013)]. Applied Physics Letters, 2015. 107(13): p. 139904.
    10. Ali, M.N., et al., Large, non-saturating magnetoresistance in WTe2. Nature, 2014. 514(7521): p. 205-208.
    11. Soluyanov, A.A., et al., Type-II Weyl semimetals. Nature, 2015. 527(7579): p. 495-498.
    12. Qian, X., et al., Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science, 2014. 346(6215): p. 1344-1347.
    13. Zheng, F., et al., On the Quantum Spin Hall Gap of Monolayer 1T′-WTe2. Advanced Materials, 2016. 28(24): p. 4845-4851.
    14. Lin, C.-L., et al., Visualizing Type-II Weyl Points in Tungsten Ditelluride by Quasiparticle Interference. ACS Nano, 2017.
    15. Zhou, J., et al., Large-Area and High-Quality 2D Transition Metal Telluride. Advanced Materials, 2017. 29(3): p. 1603471-n/a.
    16. Gutiérrez, H.R., et al., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters, 2013. 13(8): p. 3447-3454.
    17. Empante, T.A., et al., Chemical Vapor Deposition Growth of Few-Layer MoTe2 in the 2H, 1T′, and 1T Phases: Tunable Properties of MoTe2 Films. ACS Nano, 2017. 11(1): p. 900-905.
    18. Acerce, M., D. Voiry, and M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nano, 2015. 10(4): p. 313-318.
    19. Kappera, R., et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014. 13(12): p. 1128-1134.
    20. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano, 2012. 7(11): p. 699-712.
    21. Li, Y., et al., Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. 2016. 7: p. 10671.
    22. Beams, R., et al., Characterization of Few-Layer 1T′ MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering. ACS Nano, 2016. 10(10): p. 9626-9636.
    23. Lee, C.-H., et al., Tungsten Ditelluride: a layered semimetal. 2015. 5: p. 10013.
    24. Kong, W.-D., et al., Raman scattering investigation of large positive magnetoresistance material WTe2. Applied Physics Letters, 2015. 106(8): p. 081906.
    25. Wang, Y., et al., Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. 2016. 7: p. 13142.
    26. Song, Q., et al., The In-Plane Anisotropy of WTe2 Investigated by Angle-Dependent and Polarized Raman Spectroscopy. 2016. 6: p. 29254.
    27. Zhou, Y., et al., Pressure-induced Td to 1T′ structural phase transition in WTe2. AIP Advances, 2016. 6(7): p. 075008.
    28. Lee, J., et al., Single- and few-layer WTe2 and their suspended nanostructures: Raman signatures and nanomechanical resonances. Nanoscale, 2016. 8(15): p. 7854-7860.
    29. Jiang, Y.C., J. Gao, and L. Wang, Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer. 2016. 6: p. 19624.
    30. Song, Q., et al., The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths. RSC Advances, 2016. 6(105): p. 103830-103837.
    31. Lu, N., et al., Atomic and Electronic Structures of WTe2 Probed by High Resolution Electron Microscopy and ab Initio Calculations. The Journal of Physical Chemistry C, 2016. 120(15): p. 8364-8369.
    32. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide $T$S${}_{2}$. Physical Review B, 2011. 83(24): p. 245213.
    33. Li, T. and G. Galli, Electronic Properties of MoS2 Nanoparticles. The Journal of Physical Chemistry C, 2007. 111(44): p. 16192-16196.
    34. Kobayashi, K. and J. Yamauchi, Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Physical Review B, 1995. 51(23): p. 17085-17095.
    35. Ding, Y., et al., First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B: Condensed Matter, 2011. 406(11): p. 2254-2260.
    36. Lebègue, S. and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory. Physical Review B, 2009. 79(11): p. 115409.
    37. Ataca, C., H. Şahin, and S. Ciraci, Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure. The Journal of Physical Chemistry C, 2012. 116(16): p. 8983-8999.
    38. Wilson, J.A. and A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 1969. 18(73): p. 193-335.
    39. Splendiani, A., et al., Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275.
    40. Augustin, J., et al., Electronic band structure of the layered compound $\mathrm{Td}\ensuremath{-}{\mathrm{WTe}}_{2}$. Physical Review B, 2000. 62(16): p. 10812-10823.
    41. Zhang, E., et al., Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2. Nano Letters, 2017. 17(2): p. 878-885.
    42. Wu, Y., et al., Temperature-Induced Lifshitz Transition in ${\mathrm{WTe}}_{2}$. Physical Review Letters, 2015. 115(16): p. 166602.
    43. Xia, J., et al., Pressure-Induced Phase Transition in Weyl Semimetallic WTe2. Small: p. 1701887-n/a.
    44. Kim, H.-J., et al., Origins of the structural phase transitions in ${\mathrm{MoTe}}_{2}$ and ${\mathrm{WTe}}_{2}$. Physical Review B, 2017. 95(18): p. 180101.
    45. Kang, D., et al., Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. 2015. 6: p. 7804.
    46. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700.
    47. Zeng, Z., et al., Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. Angewandte Chemie International Edition, 2011. 50(47): p. 11093-11097.
    48. Voiry, D., et al., Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. 2013. 12: p. 850.
    49. Jiang, L., et al., Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to Improve Capacitances of Supercapacitors. Materials Research Letters, 2015. 3(4): p. 177-183.
    50. Kappera, R., et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. 2014. 13: p. 1128.
    51. Clark, G., et al., Vapor-transport growth of high optical quality WSe2 monolayers. APL Materials, 2014. 2(10): p. 101101.
    52. Wu, S., et al., Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano, 2013. 7(3): p. 2768-2772.
    53. Zhou, H., et al., Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers. Nano Letters, 2015. 15(1): p. 709-713.
    54. Schmidt, P., et al., Chemical Vapor Transport Reactions–Methods, Materials, Modeling, in Advanced Topics on Crystal Growth, S.O. Ferreira, Editor. 2013, InTech: Rijeka. p. Ch. 09.
    55. Lv, Y.-Y., et al., Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals. 2017. 7: p. 44587.
    56. Lee, Y.-H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
    57. Kobayashi, Y., et al., Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. ACS Nano, 2015. 9(4): p. 4056-4063.
    58. Rong, Y., et al., Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale, 2014. 6(20): p. 12096-12103.
    59. Gao, Y., et al., Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. 2015. 6: p. 8569.
    60. Liu, K.-K., et al., Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Letters, 2012. 12(3): p. 1538-1544.
    61. Ling, X., et al., Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters, 2014. 14(2): p. 464-472.
    62. Bosi, M., Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Advances, 2015. 5(92): p. 75500-75518.
    63. Chen, L., et al., Screw-Dislocation-Driven Growth of Two-Dimensional Few-Layer and Pyramid-like WSe2 by Sulfur-Assisted Chemical Vapor Deposition. ACS Nano, 2014. 8(11): p. 11543-11551.
    64. Huang, J.-K., et al., Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano, 2014. 8(1): p. 923-930.
    65. Liu, B., et al., Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. ACS Nano, 2015. 9(6): p. 6119-6127.
    66. Li, S., et al., Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Applied Materials Today, 2015. 1(1): p. 60-66.
    67. Fu, Q., et al., Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Advances, 2015. 5(21): p. 15795-15799.
    68. Yun, S.J., et al., A systematic study of the synthesis of monolayer tungsten diselenide films on gold foil. Current Applied Physics, 2016. 16(9): p. 1216-1222.
    69. Zhang, Y., et al., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 2013. 7(10): p. 8963-8971.
    70. Luna, A.E.C., M.I. Ponzi, and J.B. Rivarola, Vapor pressure of tungsten chloride oxide (WOCl4). Journal of Chemical & Engineering Data, 1983. 28(4): p. 349-350.
    71. Carmalt, C.J., I.P. Parkin, and E.S. Peters, Atmospheric pressure chemical vapour deposition of WS2 thin films on glass. Polyhedron, 2003. 22(11): p. 1499-1505.
    72. Reale, F., K. Sharda, and C. Mattevi, From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Applied Materials Today, 2016. 3: p. 11-22.
    73. Eichfeld, S.M., et al., Highly Scalable, Atomically Thin WSe2 Grown via Metal–Organic Chemical Vapor Deposition. ACS Nano, 2015. 9(2): p. 2080-2087.
    74. Cain, J.D., et al., Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei. ACS Nano, 2016. 10(5): p. 5440-5445.
    75. Lee, Y.-H., et al., Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013. 13(4): p. 1852-1857.
    76. Galfsky, T., et al., Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals. Nano Letters, 2016. 16(8): p. 4940-4945.
    77. Zhang, X.-Q., et al., Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Letters, 2015. 15(1): p. 410-415.
    78. Zhang, X., et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015. 44(9): p. 2757-2785.
    79. Berkdemir, A., et al., Identification of individual and few layers of WS2 using Raman Spectroscopy. 2013. 3: p. 1755.
    80. Mitioglu, A.A., et al., Second-order resonant Raman scattering in single-layer tungsten disulfide ${\mathrm{WS}}_{2}$. Physical Review B, 2014. 89(24): p. 245442.
    81. Eda, G., et al., Photoluminescence from Chemically Exfoliated MoS2. Nano Letters, 2011. 11(12): p. 5111-5116.
    82. Zhao, W., et al., Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano, 2013. 7(1): p. 791-797.
    83. Mak, K.F., et al., Tightly bound trions in monolayer MoS2. Nature Materials, 2012. 12: p. 207.
    84. Mitioglu, A.A., et al., Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Physical Review B, 2013. 88(24): p. 245403.
    85. Jones, A.M., et al., Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotechnology, 2013. 8: p. 634.
    86. Ross, J.S., et al., Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Communications, 2013. 4: p. 1474.
    87. Tongay, S., et al., Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Scientific Reports, 2013. 3: p. 2657.
    88. Reale, F., et al., High-Mobility and High-Optical Quality Atomically Thin WS 2. Scientific Reports, 2017. 7(1): p. 14911.
    89. Yin, X., et al., Edge Nonlinear Optics on a MoS<sub>2</sub> Atomic Monolayer. Science, 2014. 344(6183): p. 488-490.
    90. Wang, S., et al., Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chemistry of Materials, 2014. 26(22): p. 6371-6379.
    91. Mleczko, M.J., et al., High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2. ACS Nano, 2016. 10(8): p. 7507-7514.
    92. Chen, L., et al., Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode. ACS Nano, 2015. 9(8): p. 8368-8375.
    93. Carl, H.N., et al., Large-area synthesis of high-quality monolayer 1T’-WTe 2 flakes. 2D Materials, 2017. 4(2): p. 021008.

    QR CODE