簡易檢索 / 詳目顯示

研究生: 郭民廉
Min-Lian Kuo
論文名稱: 以二元催化金屬於玻璃基板上低溫製備奈米碳管與其場發射性質
Low Temperature Growth of Carbon Nanotube on Glass Substrate Using Binary Catalysts and its Field Emission Properties
指導教授: 戴念華
Nyan-Hwa Tai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 116
中文關鍵詞: 低溫奈米碳管鈷鈦二元催化金屬阻絕層流場邊界層場發射性質
外文關鍵詞: Low Temperature, Carbon Nanotubes, Co/Ti Binary Catalysts, Buffer Layer, Flow Filed, Boundary Layer, Field Emission Properties
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以鈷鈦二元催化金屬,低溫(550℃以下)製備奈米碳管於玻璃基板上,應用於大面積的場發射元件。我們發現金屬鈦可以有效幫助金屬鈷於溫度550℃以下成長奈米碳管,而且兩者間的膜厚與比例對奈米碳管成長也是有相當程度的影響。為了讓玻璃基板可以導電,以作為場發射元件的陰極端,本研究嘗試尋找適合鈷鈦催化金屬的底電極。
    本研究同時發現使用不同的碳源流場,奈米碳管的成長會有不一樣的結果,以不同高度的載具來改變碳源流場,當增加載具的高度,奈米碳管的密度會增加,場發射性質也會跟著提升。奈米碳管的密度過高會造成遮蔽效應,為了改善這種現象,本研究嘗試利用熱處理氧化及氧電漿轟擊,製造更多的發射電子位置,以提升場發射性質。


    Carbon nanotubes (CNTs) were synthesized on glass substrates at low temperature (550℃) using binary catalyst, Co/Ti, which is applicable to the preparation of large area field emission devices. It has been found that the catalyst activity is affected not only by the thickness of the catalysts, but also by their thickness ratio. In order to let the glass can conduct electricity, we try to find a lot of different materials as an electrode.
    The results were different when the samples were subjected to different flow field of carbon source. We have used the different height of the quartz boats to change the flow field during CNTs growth. The field emission current density increased with the stream velocity in the flow field. Screen effect due to high dense CNTs reduces the emission properties, and it can be alleviated by thermal oxidation or oxygen plasma. Additionally, we hope increase more emission site to shoot more electron.

    第一章 緒論…………………………………………………………1 1.1 簡介……………………………………………………………1 1.2 奈米碳管的結構與性質………………………………………1 1.3 奈米碳管的製程………………………………………………2 1.3.1 電弧放電法 (Arc-Discharge)…………………………3 1.3.2 雷射蒸發法 (Laser Ablation)………………………3 1.3.3 化學氣相沈積法 (Chemical Vapor Deposition)……4 1.4 研究動機………………………………………………………5 1.4.1 奈米碳管場發射顯示器(CNT-FED)的優點……………5 1.4.2 奈米碳管場發射顯示器發展瓶頸………………………6 第二章 文獻回顧……………………………………………………15 2.1 奈米碳管的成長機制………………………………………16 2.2 奈米碳管的低溫製程………………………………………16 2.2.1 催化金屬選用與製備…………………………………16 2.2.2 前處理…………………………………………………21 2.2.3 碳源……………………………………………………22 2.2.4 成長壓力………………………………………………23 2.3 在具有電極的玻璃基板上低溫成長奈米碳管………………24 2.4 場發射的原理………………………………………………24 2.5 場發射性質提升方法………………………………………27 第三章 研究方法與實驗步驟………………………………………41 3.1 研究方法……………………………………………………41 3.2 實驗步驟……………………………………………………41 3.2.1 玻璃基材的準備………………………………………41 3.2.2 薄膜製程………………………………………………41 3.2.3 電極上的選區…………………………………………43 3.2.4 催化金屬熱處理………………………………………43 3.2.5 熱裂解碳源成長奈米碳管……………………………44 3.3 量測儀器簡介………………………………………………44 3.3.1 奈米碳管微觀形貌之觀察(FE-SEM)…………………45 3.3.2 奈米碳管細微結構之觀察(TEM)………………………45 3.3.3 薄膜晶體結構之分析(XRD)……………………………45 3.3.4 薄膜表面形態與粗糙度(AFM)…………………………45 3.3.5 二次離子縱深成份分析(SIMS) ………………………46 3.3.6 檢測石墨排列結構及結晶性(Micro Raman system)46 3.3.7 奈米碳管場發射性質量測(Keithley 237)…………47 第四章 結果與討論…………………………………………………55 4.1 直接於玻璃基板上成長奈米碳管…………………………55 4.2 以薄膜製程製作玻璃基板電極……………………………55 4.2.1 以鉬作為玻璃基板電極………………………………56 4.2.2 改變爐管內的氣體流動方式(改變石英舟高度)……58 4.2.3 具有中間層氧化鋁的鉬電極玻璃基板………………60 4.2.4 具有阻絕層氮化鋁的鉬電極玻璃基板………………61 4.2.5 高溫爐管參數影響……………………………………66 4.2.6 催化金屬膜厚對石墨排列結構及結晶性的影響……68 4.2.7 催化金屬表面粗糙度的再探討………………………69 4.2.8 以銦錫氧化物薄膜作為玻璃基板電極………………70 4.3 以厚膜製程製作玻璃基板電極……………………………70 4.4 場發射性質比較……………………………………………71 4.4.1 鉬電極玻璃基板上的場發射性質比較………………72 4.4.2 改變爐管內氣體流動方式的場發射性質比較 ………73 4.4.3 加入阻絕層的鉬電極玻璃基板上其場發射性質比較73 4.4.4 不同催化金屬的場發射性質比較……………………74 4.4.5 銀電極玻璃基板上的場發射性質比較………………74 4.5 試片場發射性質提升之後續處理…………………………75 4.5.1 空氣下氧化……………………………………………75 4.5.2 氧電漿乾式蝕刻………………………………………77 第五章 結論………………………………………………………108 參考文獻………………………………………………………………110

    [1] H. W. Kroto, J. R. Heath, S. C. O, Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerence”, Nature, 318, 162-163 (1985)
    [2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991)
    [3] Rice University: Rick Smalley’s Group Home Page Image Gallery
    [4] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes & Carbon Nanotubes, San Diego: Academic Press(1996)
    [5] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995)
    [6] Hanada N, Sawada SI, Oshiyama A., “New One-Dimensional Conductor Microtubles”, Phys. Rev. Lett., 68, 1579(1992)
    [7] Mintmire JW, Dunlap BI, White CT., “Are Fullerene Tubles Metallic?”, Phys. Rev. Lett., 68, 631(1992)
    [8] Saito R, Fujita M, Dresselhaus G . Physical Properties of Carbon Nanotubes. Imperial College, 1998
    [9] Yahachi Saito, Sashiro Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, 169-182 (2000)
    [10] S. Iijima, Ichihashi T., “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, 603-605(1993)
    [11] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chem.Phys. Lett., 243, 49(1995)
    [12] W. K Master, E. Munoz, M.T. Martinez, A.M. Benito, G.F. de la Fuente, “Study of parameters important for the growth of single wall carbon nanotubes”, Optical Materials, 17, 331-334(2001)
    [13] Masako Yudasaka, Toshinari Ichihashi, Toshiki Komatsu, Sumio Iijima, “Single-wall carbon nanotubes formed by a single laser-beam pulse”, Chemical Physical Letters, 299, 91-96(1999)
    [14] A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, “Controlling single-wall nanotube diameters with variation in laser pulse power”, Chem. Phys. Lett., 316, 13 (2000)
    [15] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons”, Appl. Phys. Lett., 72, 22(1998)
    [16] Chris Bower, Wei Zhu, Sungho Jin and Otto Zhou,“Plasma-induced alignment of carbon nanotubes”, Appl. Phys. Lett., 77, 830 (2000)
    [17] M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, “Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 77, 3468(2000)
    [18] http://www.jegsworks.com/Lessons/lesson5/lesson5-4.htm
    [19] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid mechanism of single crystal growth”, Appl. Phys. Lett., 4, 89(1964)
    [20] A. Oberlin and M. Endo, “Filamentous growth og carbon through benzene decomposition”, J. Cryst. Growth, 32, 335(1976)
    [21] N. M. Rodriguez, “A review of catalytically grown carbon nanofibers”, J. Master. Res., 8, 3233(1993)
    [22] H. Kanzow and A. Ding, “Formation mechanism of single-wall carbon nanotube on liquid-metal particles”, Phys. Rev. B, 60, 11180(1999)
    [23] C. Ducati, I. Alexanfrou, M. Chhowalla, J. Robertson and G. A. Amaratunga, “The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition”, J. Appl. Phys., 95, 6387(2004)
    [24] Cheol Jin Lee, Kwon Hee Son, Jeunghee Park, Jae Eun Yoo, Yoon Huh, Heong Yong Lee, “Low temperature growth of vertically aligned carbon nanotubes by thermal CVD”, App. Phys. Lett., 338, 113-117(2001)
    [25] Yong Sook Shin Ji Hoon Yang, Chong-Yun Park, Myeung Hoi Kwon, Ji-Beom Yoo and Cheol Woong Yang, “Synthesis of crystalline carbon nanotube arrays on anodic aluminum oxide using catalyst reduction with low pressure thermal chemical vapor deposition”, Jap. J. Appl. Phys., 45, 1869-1872(2006)
    [26] D. Sarangi, I. Arfaoui and J.-M. Bonard, “Carbon nanotube growth on borosilicate glass for flat panel displays”, Phys. B, 323, 165-167(2002)
    [27] Shen Zhu, Ching-Hua Su, S.L. Lehoczky, I. Muntele and D. Ila, “Carbon nanotube growth on carbon fibers”, Diamond Relat. Mater., 12, 1825-1828(2003)
    [28] Hongwei Liao and Jason H. Hafner, “Low-Temperature Single-Wall Carbon Nanotube Synthesis by Thermal Chemical Vapor Deposition”, J Phys. Chem. B, 108, 6941-6943(2004)
    [29] W.Z. Li, J.G. Wen, Y. Tu and Z.F. Ren, “Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition”, Appl. Phys. A, 73, 259-264 (2001)
    [30] Vijaya Kumar Kayastha, Yoke Khin Yapa, Zhengwei Pan, Ilia N. Ivanov, Alex A. Puretzky and David B. Geohegan, “High-density vertically aligned multiwalled carbon nanotubes with tubular structures”, Appl. Phys. Lett., 86, 253105(2005)
    [31] F.H. Kaatza,, M.P. Siegalb, D.L. Overmyer, P.P. Provenciob, J.L. Jackson, “Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition”, Mater. Sci. Engin. C, 23, 141-146(2003)
    [32] Takeshi Hashishin, Yosuke Tono and Jun Tamaki, “Guide Growth of Carbon Nanotube Arrays Using Anodic Porous Alumina with Ni Catalyst”, Jap. J Appl. Phys., 45, 333-337(2006)
    [33] Z. sun, Y. J. Li, G. Y. Chen, S. P. Lau, B. K. Tay and J. S. Chen, “Fabrication of carbon nanotube film arrays for field emission flat panel display application”, Surf. Rev. Lett., 8, 505-508(2001)
    [34] Hee Jin Jeong, Seung Yol Jeong, Young Min Shin, Jeong Ho Han, Seong Chu Lim, Sung Jin Eum, Cheol Woong Yang, Nam-gyun Kim, Chong-Yun Park, Young Hee Lee, “Dual-catalyst of vertically aligned carbon nanotubes at low temp. in thermal CVD”, Chem. Phys. Lett., 361,189-195(2002)
    [35] C.H. Li, S.C. Tseng, S.C. Lo, K.F. Chen, Z.Y. Juang, K.C. Leou, C.H. Tsai, “Pressure effect of low-temperature growth of multi-wall carbon nanotubes on Nickel catalyst/barrier-coated glass by thermal-CVD”, Surf. Coat. Tech., 200, 3220-3223(2006)
    [36] Jaemyung Kim, Kwangsoo No and Cheol Jin Lee, “Growth and field emission of carbon nanotubes on electroplated Ni catalyst coated on glass substrates”, J. Appl. Phys., 90, 2591-2594(2001)
    [37] Kao-Chao Lin, Tsung-Ying Chuang, Han-Chung Tai, Chuan-Ping Juan, Rui-Ling Lai, Yao-Ren Chang, Jiun-Kai Shiu and Huang-Chung Cheng,“Low temperature growth of Carbon nanotubes by thermal chemical vapor deposition using novel catalyst”, 2006TDC, 06-018
    [38] Shigeo Maruyama, Ryosuke Kojima, Yuhei Miyauchi, Shohei Chiashi and Masamichi Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol”, Chem. Phys. Lett., 360, 229-234(2002)
    [39] Guojun Yu, Jinlong Gong, Dezhang Zhu, Suixia He and Zhiyuan Zhu, “Synthesis of carbon nanotubes over rare earth zeolites at low temperature”, Carbon, 43, 3002-3039(2005)
    [40] K. Kamada, T. Ikuno, S. Takahashi, T. Oyama, T. Yamamoto, M. Kamizono, S. Ohkura, S. Honda, M. Katayama, T. Hirao, K. Oura, “Surface morphology and field emission characteristics of carbon nanofiber films grown by chemical vapor deposition on alloy catalyst ”, Appl. Surf. Sci., 212–213, 383–387 (2003)
    [41] Z. Chen, D. Den Engelsen, P. K. Bachmann, V. Van Elsbergen, I. Koehler, J. Merikhi, and D. U. Wiechert, “High emission current density microwave-plasma-grown carbon nanotube arrays by post depositional radio-frequency oxygen plasma treatment”Appl.Phys.Lett., 87, 243104 (2005)
    [42] Yoshikazu Nakayama, Lujun Pan and Goichi Takeda, “ Low-Temperature Growth of Vertically Aligned Carbon Nanotubes Using Binary Catalysts”, Jpn. J. App. Phys., 45, 369-371 (2006)
    [43] Goichi Takeda, Lujun Pan, Seiji Akita and Yoshikazu Nakayama, “Vertically Aligned Carbon Nanotubes Grown at Low Temperatures for Use in Displays ”, Jpn. J. App. Phys., 44, 5642-5645 (2005)
    [44] Shintaro Sato, Akio Kawabata, Daiyu Kondo, Mizuhisa Nihei and Yuji Awano, “Carbon nanotube growth from titanium-cobalt bimetallic particles as a catalyst”, Chem. Phys. Lett, 402, 149-154 (2005)
    [45] Young-Jun Park, In-Taek Han, Ha-Jin Kim, Yun-Sung Woo, Nae-Sung Lee, Yong-Wan Jin, Jae-Eun Jung, Jun-Hee Choi, Deuk-Seok Jung, Chong-Yun Park and Jong -Min Kim, “Effect of catalytic layer thickness on growth and dield emission characteristics of carbon nanotubes synthesized at low temperatures using thermal chemical vapor deposition”, Jpn. J Appl. Phys., 41,4678-4685(2002)
    [46] In Taek Han, Ha Jin Kim, Young-Jun Park, Naesung Lee, Jae Eun Jang, Jung Woo Kim, Jae Eun Jung, and Jong Min Kim, “Fabrication and characterization of gated field emitter arrays with self-aligned carbon nanotubes grown by CVD”, Appl.Phys.Lett.,81, 2070 (2002)
    [47] Ha Jin Kim, In Taek Han, Young Jun Park, Jong Min Kim, Jong Bong Park, Bum Kwon Kim, Nae Sung Lee, “Synthesis of hybrid multiwall carbon nanotubes and their enhanced field emission properties ”, Chem. Phys. Lett., 396, 6–9 (2004)
    [48] Bum Kwon Kim, Byung Yun Kong, Jeon Yeong Seon, Nae Sung Lee, Ha Jin Kim,In Taek Han, Jun Hee Choi, Jae Eun Jung and Jong Min Kim, “Field Emission Characteristics of Pattern-grown Carbon Nanotubes”, Jap. J. Appl. Phys., 43, 1572-1574 (2004)
    [49] Tetsuya Shiroishi, Takao Sawada, Akihiko Hosono, and Shuhei Nakata, Yasunori Kanazawa and Mikio Takai, “Low-temperature growth of carbon nanotube by thermal chemical vapor deposition with FeZrN catalyst”, J. Vac. Sci. Technol. B, 22, 1834 (2004)
    [50] Jiang, Q., Tong, H.Y., Hsu, D.T., Okuyama, K.,and Shi, F.G.,” Thermal stability of crystalline thin films”, Thin Solid Films, 312, 357-361(1998)
    [51] Cheol Jin Lee, Jeunghee Park, Seungwu Han and Jisoon Ihm,”Growth and field emission of carbon nanotubes on sodalime glass at 550℃ using thermal chemical vapor deposition”, Chem. Phys. Lett., 337, 398-402(2001)
    [52] Caterina Ducati, Ioannis Alexandrou, Manish Chhowalla, Gehan A. J. Amaratunga and John Robertson, “Temperature selective growth of carbon nanotubes by chemical vapor deposition”, J Appl. Phys., 92, 3299-3303(2002)
    [53] Young Min Shin, Seung Yol Jeong, Hee Jin Jeong, Sung Jin Eum, Cheol Woong Yang, Chong Yun Park and Young Hee Lee, “Influence of morphology of catalyst thin film on vertically aligned carbon nanotube growth”, J Crys. Grow., 271, 81-89 (2004)
    [54] M. P. Siegal, D. L. Overmyer and F. H. Kaatz, “Controlling the site density of multiwall carbon nanotubes via growth conditions”, Appl. Phys. Lett., 84, 5156-5159(2004)
    [55] Y. J. Li, Z. Sun, S. P. Lau, G. Y. Chen, and B. K. Tay, “Carbon nanotube films prepared by thermal chemical vapor deposition at low temperature for field emission applications ”, Appl. Phys. Lett., 79, 1670 (2001)
    [56] Mirco Cantoro, Stephan Hofmann, Simone Pisana, Vittorio Scardaci, Atlus Parvez, Caterina Ducati, Andrea C. Ferrari, Arthur M. Blackburn, Kai-You Wang and John Robertson, “Catalytic Chemical Vapor Deposition of Single-Wall Carbon Nanotubes at Low Temperatures”, Nano Letters, 6, 1107-1112(2006)
    [57] Hiroyuki Kurachi, Sashiro Uemura, Jyunko Yotani, Takeshi Nagasako, Hiromu Yamada, Tomotaka Ezaki, Tsuyoshi Maesoba, Takehiro Nakao, Masaaki Ito, Akira Sakurai, Yahachi Saito and Hisanori Shinohara, “Uniform carbon-nanotube emitter for field-emission displays”, J SID, 13, 727-733 (2005)
    [58] Cheol Jin Lee, Jeunghee Park, Jae Myung Kim, Yoon Huh, Jeong Yong Lee and Kwang Soo No, “Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst”, Chem. Phys. Lett., 327, 277-283(2000)
    [59] Minjae Jung, Kwang Yong Eun, Jae-Kap Lee, Young-Joon Baik,Kwang-Ryeol Lee, Jong Wan Park, “Growth of carbon nanotubes by chemical vapor deposition”, Diamond Relat. Mater., 10, 1235-1240(2001)
    [60] R. H. Fowler, L. W. Nordheim, Proc. Roy. Soc. London, Ser., A119, 173(1928)
    [61] L. Nordheim, Proc. Roy. Soc. London, Ser., A121, 626(1928)
    [62] D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).
    [63] C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westerberg, “Physical properties of thin field emission cathode with molybdenum cones”, J. Appl. Phys., 47, 5248-5263(1976).
    [64] Ke Yu, Ziqiang Zhu, Yongsheng Zhang, Qiong Li, Weiming Wang, Laiqiang Luo, Xianwen Yu, Honglei MaZhenwen Li, Tao Feng,“Change of surface morphology and field emission property ofcarbon nanotube films treated using a hydrogen plasma”, Appl. Surf. Sci., 225, 380–388 (2004)
    [65] Chai Yang, Yu Li-Gang, Wang Ming-Sheng, Zhang Qi-Feng, Wu Jin-Lei,“Low-Field Emission from Iron Oxide-Filled Carbon Nanotube Arrays”,Chin. Phys. Lett., 22, 911(2005)
    [66] Y. Y. Wang, S. Gupt, M. Liang, R. J. Nemanich, “Increased field-emission site density from regrown carbon nanotube films”,
    J. Appl. Phys., 97, 104309(2005)
    [67] Hyeon Jae Lee, Yang Doo Lee, Seung Il Moon, Woo Sung Cho, Yun-Hi Lee, Jai Kyeong Kim, Sung Woo Hwang, Byeong Kwon Ju, “Enhanced surface morphologies of screen-printed carbon nanotube films by heat treatment and their field-emission properties”, Carbon, 44, 2625(2006)
    [68] Hideki Sato, Yasunori Hori, and Koichi Hata, Kazuyuki Seko, Hitoshi Nakahara, and Yahachi Saito, “Effect of catalyst oxidation on the growth of carbon nanotubes by thermal chemical vapor deposition”, Jap. J. Appl. Phys., 100, 104321(2006)
    [69] Baoqing Zeng,Guangyong Xiong, Shuo Chen, W. Z. Wang, D. Z. Wang, and Z. F. Ren, “Enhancement of field emission of aligned carnon nanotube by thermal oxidation”, Appl. Phys. Lett., 89, 223119(2006)
    [70] Whikun Yi, Taewon Jeong, SeGi Yu, Jungna Heo, Changsoo Lee, Jeonghee Lee, Wonseok Kim, Ji-Beom Yoo and Jongmin Kim, “Field-Emission Characteristics from Wide-Bandgap Materials-Coated Carbon Nanotubes”, Advanced Materials, 14, 1464 (2002)
    [71] Choong Jin Yang, Jong Il Park and Young Rae Cho, “Enhanced Field-Emission Obtained from NiO Coated Carbon Nanotubes”, Advanced Engineering Materials, 9, 88 (2007)
    [72] Yong Zhen-Zhong, Gong Jin-Long, Wang Zhen-Xia, Zhu Zhi-Yuan, Hu Hian-Gang, Pan Qiang-Yan, “Field Emission Enhancement of Carbon Nanotubes by Surface Modification”, Chin. Phys. Lett., 24, 233(2007)
    [73] Ruth Y. Zhang, Islamshah Amlani, Jeff Baker, John Tresek, and Raymond K. Tsui, “Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultra thin Ni/Al Film as Catalyst”, Nano Lett., 3, 731-735(2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE