研究生: |
聖天齊 Akash Gupta |
---|---|
論文名稱: |
分子在表面之聚合反應 On-Surface Polymerization |
指導教授: |
霍夫曼
Hoffmann, Germar |
口試委員: |
關肇正
Kaun, Chao-Cheng 唐述中 Tang, Shu-Jung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | 分子線 、掃描隧道顯微鏡 、分子表面輔助耦合 、反應 、[5]菲烯 |
外文關鍵詞: | Scanning Tunneling Microscope/Spectroscopy, Surface assisted coupling |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,透過共價偶聯來擴展分子結構的方式引起了極大的關注。 在此種聚合物中,藉由可微調的電子特性,共軛π電子可以自由地移動。當與無機材料或是有機小分子相比,可調性在聚合物中更容易具體的實現,因此具有改進設備的巨大潛力。 通過表面生長的分子電路系統實現電子設備的小型化。 藉由表面合成原理所構建的共價鍵在過去十年中得到了極大的發展,表面輔助耦合可以合成無法在液體中合成的聚合物,不同的表面輔助偶聯反應已被使用為作用的主力。 眾所周知的 Wurtz 偶聯反應以金屬表面來作為示範,而不同於Ullmman 型偶聯反應中的芳基,烷基會參與Wurtz 反應的偶聯機制。 [5]在室溫下的非並苯骨架前體的合成可以形成碳-碳偶聯,具體來說,我們觀察到了一種依賴於溫度的耦合機制,分別由STM/STS 研究進行了密集的溫度/時間依據的相關實驗測試。 而PES、LEED、ARPES 等研究是由共同合作的實驗室一起完成的。
Covalently coupled extended molecular structure (Polymers) attracted huge attention in recent years. In such polymers, π electrons (conjugated) can move freely with the electronic properties finely tunable. This is more easily realized in polymers in comparison to inorganic materials or small organic molecules and has therefore huge potential for improved devices.
It offers the miniaturization of electronic devices through on-surface-grown molecular circuitry. The construction of covalent bonds through On-Surface Synthesis greatly developed during the past decade. Surface-assisted coupling can realize polymers, which are not possible in solution. Distinct surface-assisted coupling reactions have been used as the main workhorse. The well-known Wurtz coupling reaction is here demonstrated on a metal surface. Alkyl groups participate in the coupling mechanism of Wurtz reaction in difference to aryl groups in Ullmman type coupling reaction. The synthesis of [5]Phenacene backbone precursor results into a Carbon-Carbon coupling at room temperature. Specifically, a temperature-dependent and competing coupling mechanism was observed. An intensive temperature/time-dependent experiments with respective STM/STS study was done. The comparative studies by PES, LEED, ARPES was done in the collaboration.
[1] Grill, L., Hecht, S. Covalent on-surface polymerization. Nature chemistry, 12(2),115-130, 2020.
[2] Ullmann, F., Bielecki, J. Ueber synthesen in der biphenylreihe. Berichte derdeutschen chemischen Gesellschaft, 34(2), 2174-2185, 1901.
[3] Shen, Q., Gao, H. Y., Fuchs, H. Frontiers of on-surface synthesis: from principles to applications. Nano Today, 13, 77-96, 2017.
[4] Wallace R. Team aims to create graphene nanoribbon ’wires capable of carryinginformation thousands of times faster. PHYS ORG, 2014.
[5] Chen, J. Introduction to Scanning Tunneling Microscopy Third Edition. Oxford UniversityPress, USA, 69, 2021.
[6] Ludwig A. Kibler. Preparation and characterization of noble metal single crystal electrode surfaces. International Society of Electrochemistry, 2003.
[7] Fujita, D., Amemiya, K., Yakabe, T., Nejoh, H., Sato, T., Iwatsuki, M. Observation of two-dimensional Fermi contour of a reconstructed Au (111) surface using Fourier transform scanning tunneling microscopy. Surface science, 423(2-3), 160-168, 1999.
[8] Vij, V., Bhalla, V., Kumar, M. Hexaarylbenzene: evolution of properties and applications of multitalented scaffold. Chemical reviews, 116(16), 9565-9627, 2016.
[9] Sui, Z. Y., Wang, C., Yang, Q. S., Shu, K., Liu, Y. W., Han, B. H., Wallace, G. G. Dicyanotriphenylamine-Based Polyimides as High-Performance Electrodes for Next Generation Organic Lithium-Ion Batteries. Journal of Materials Chemistry A, 3(35),
18229-18237.
10] Labasan, K. B., Lin, H. J., Baskoro, F., Togonon, J. J. H., Wong, H. Q., Chang, C. W., ... Yen, H. J. A highly nitrogen-doped porous graphene–an anode material
for lithium ion batteries. ACS Applied Materials & Interfaces, 13(15), 17467-17477, 2021.
[11] Okamoto, H., Hamao, S., Kozasa, K., Wang, Y., Kubozono, Y., Pan, Y. H., ...Goto, K. Synthesis of [7] phenacene incorporating tetradecyl chains in the axis positions and its application in field-effect transistors. Journal of Materials Chemistry C, 8(22), 7422-7435, 2020.
[12] Pi-Conjugation. https://chem.libretexts.org/@go/page/16964, 2019.
[13] Lewis, I. C., Singer, L. S. Electron spin resonance study of the reaction of aromatic hydrocarbons with oxygen. The Journal of Physical Chemistry, 85(4), 354-360, 1981.
[14] Shimo, Y., Mikami, T., Hamao, S., Goto, H., Okamoto, H., Eguchi, R., ... Kubozono, Y. Synthesis and transistor application of the extremely extended phenacene molecule, [9]phenacene. Sci Rep 6, 21008 (2016).
[15] Mitsuhashi, R., Suzuki, Y., Yamanari, Y., Mitamura, H., Kambe, T., Ikeda, N., ...Kubozono, Y. Superconductivity in alkali-metal-doped picene. Nature 464, no. 7285 (2010).
[16] Grill, L., Dyer, M., Lafferentz, L., Persson, M., Peters, M. V., Hecht, S. Nanoarchitectures by covalent assembly of molecular building blocks. Nature nanotechnology, 2(11), 687-691, 2007.
[17] Song, S., Su, J., Telychko, M., Li, J., Li, G., Li, Y., ... Lu, J. On-surface synthesis of graphene nanostructures with π-magnetism. ACS nano, 11(4), 4183-4190, 2017.
[18] Lewis, E. A., Murphy, C. J., Liriano, M. L., Sykes, E. C. H. Atomic-scale insight into the formation, mobility and reaction of Ullmann coupling intermediates. Chemical Communications, 50(8), 1006-1008, 2014.
[19] Zint, S., Ebeling, D., Schloder, T., Ahles, S., Mollenhauer, D., Wegner, H. A., Schirmeisen, A. Imaging successive intermediate states of the on-surface Ullmann reaction on Cu (111): role of the metal coordination. ACS nano, 11(4), 4183-4190, 2017.
[20] Fan, Q., Gottfried, J. M., Zhu, J. Surface-catalyzed C–C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Accounts of chemical research, 48(8), 2484-2494, 2015.
[21] Zhang, Y. Q., Kepˇcija, N., Kleinschrodt, M., Diller, K., Fischer, S., Papageorgiou, A. C., ... Barth, J. V. Homo-coupling of terminal alkynes on a noble metal surface. Nature communications, 3(1), 1-8, 2012.
[22] Smith, M. B.. March’s advanced organic chemistry: reactions, mechanisms, and structure. John Wiley & Sons, 2020.
[23] Sun, Q., Cai, L., Ding, Y., Ma, H., Yuan, C., Xu, W. Single-molecule insight into Wurtz reactions on metal surfaces. Physical Chemistry Chemical Physics, 18(4),
2730-2735, 2016.
[24] Zuzak, R., Jancarik, A., Gourdon, A., Szymonski, M., Godlewski, S. On-Surface Synthesis with Atomic Hydrogen. ACS nano, 14(10), 13316-13323, 2020.
[25] Abyazisani, M., MacLeod, J. M., Lipton-Duffin, J. Cleaning up after the party: Removing the byproducts of on-surface Ullmann coupling. ACS nano, 13(8), 9270-
9278, 2019.
[26] Galeotti, G., Di Giovannantonio, M., Lipton-Duffin, J., Ebrahimi, M., Tebi, S., Verdini, A., ... Contini, G. The role of halogens in on-surface Ullmann polymerization. Faraday discussions, 204, 453-469, 2017.
[27] Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., ... Fasel, R. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature,
466(7305), 470-473, 2010.
[28] Tran, B. V., Pham, T. A., Grunst, M., Kivala, M., St¨ohr, M. Surface-confined [2+2] cycloaddition towards one-dimensional polymers featuring cyclobutadiene units. Nanoscale, 9(46), 18305-18310, 2017.
[29] Bronner, C., Bjork, J., Tegeder, P. Tracking and removing Br during the on-surface synthesis of a graphene nanoribbon. The Journal of Physical Chemistry C, 119(1), 486-493, 2015.
[30] Gross, L., Moresco, F., Ruffieux, P., Gourdon, A., Joachim, C., Rieder, K. H. Tailoring molecular self-organization by chemical synthesis: Hexaphenylbenzene, hexaperi-hexabenzocoronene, and derivatives on Cu (111). Physical Review B, 71(16),
165428, 2005.
[31] Huempfner, T., Hafermann, M., Udhardt, C., Otto, F., Forker, R., Fritz, T. Insight into the unit cell: Structure of picene thin films on ag(100) revealed with complementary methods. The Journal of Chemical Physics, 145(17):174706, nov 2016.
[32] Chen, S. W., Sang, I. C., Okamoto, H., Hoffmann, G. Adsorption of phenacenes on a metallic substrate: Revisited. The Journal of Physical Chemistry C, 121(21), 11390-11398, 2017.
[33] Yoshida, Y., Yang, H. H., Huang, H. S., Guan, S. Y., Yanagisawa, S., Yokosuka, T.,... Hasegawa, Y. Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag (111). The Journal of chemical physics, 141(11), 114701, 2014.
[34] Okamoto, H., Hamao, S., Eguchi, R., Goto, H., Takabayashi, Y., Yen, P. Y. H.,... Kubozono, Y. Synthesis of the extended phenacene molecules,[10] phenacene and [11] phenacene, and their performance in a field-effect transistor. Scientific reports,
9(1), 1-11, 2019.
[35] Galeotti, G., Di Giovannantonio, M., Cupo, A., Xing, S., Lipton-Duffin, J., Ebrahimi, M., ... Contini, G. An unexpected organometallic intermediate in surfaceconfined Ullmann coupling. Nanoscale, 11(16), 7682-7689, 2019.
[36] Niu, K., Lin, H., Zhang, J., Zhang, H., Li, Y., Li, Q., Chi, L. Mechanistic investigations of the Au catalysed C–H bond activations in on-surface synthesis. Physical Chemistry Chemical Physics, 20(23), 15901-15906, 2018.
[37] Redhead, P. A.. Hydrogen in vacuum systems: an overview. In AIP Conference Proceedings (Vol. 671, No. 1, pp. 243-254). American Institute of Physics, July, 2003.
38] Endo, O., Kondoh, H., Ohta, T. Scanning tunneling microscope study of bromine adsorbed on the Ag(111) surface. Surface science, 441(2-3), L924-L930, 1999.
[39] Holmes, D. J., Panagiotides, N., King, D. A. Observation of a low temperature incommensurate Ag {111}(√ 3×√ 3) R30°-Br phase. Surface Science, 222(2-3), 285-295, 1989.
98