簡易檢索 / 詳目顯示

研究生: 余思縈
Yu, Shih-Ying
論文名稱: Syntheses and Modifications of TiO2 Nanobelts by Hydrothermal Method
水熱法合成二氧化鈦奈米帶及其改質
指導教授: 陳力俊
Chen, Lih-Juann
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 79
中文關鍵詞: 二氧化鈦奈米帶紫外-可見光吸收光譜氣體感測水熱法鎢摻雜釩摻雜
外文關鍵詞: Titanium dioxide, Nanobelts, UV-Visible Spectroscopy, Gas sensing, Hydrothermal Method, W-doped, V-doped
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦是最有效率的光催化材料之一。由於它擁有長時間的穩定性,無毒性及優越的光催化活性,目前已經被廣泛的使用。本研究主要著重在探討利用水熱法及離子交換法生長金屬摻雜的二氧化鈦奈米帶,並且探討其特性。
    產量高、形態一致的鎢摻雜與二氧化釩修飾的二氧化鈦奈米帶成功地經由兩步驟合成被製造出來。成長的參數,例如:起始材料的的結構、鹼性溶液的種類及濃度、反應溫度及時間皆依照不同的摻雜金屬而試驗出各自的最佳化條件。此外,鎢摻雜的二氧化鈦奈米帶也可經由一步驟結合水熱法及離子交換法的方式合成。不同的摻雜原始材料量對於成長以及相的影響將被討論。
    此研究中,測量了金屬摻雜二氧化鈦的紫外-可見光光譜。結果可以發現,經過金屬摻雜的二氧化鈦奈米帶擁有比純二氧化鈦奈米帶更小的能帶,這個性質可以改善其對於可見光的吸收。
    對於酒精氣體感測的性質在此研究中也同時被證明。在攝氏150度時,對不同酒精氣體濃度的感應也被測試。摻雜對於結構以及感應的性質的影響也被探討。鎢摻雜的二氧化鈦奈米帶擁有比純二氧化鈦薄膜更好的敏感性。此外,在相對性低的工作溫度下,鎢摻雜的二氧化鈦奈米帶也擁有很短的反應以及回復時間。


    Titanium dioxide, known as one of the most efficient photocatalytist materials, is widely used because of its long-term stability, free from toxicity and good photocatalytic activity. This study is focused on the properties of metal-doped TiO2 nanobelts grown with hydrothermal treatment and ion-exchange.
    High yield, uniform tungsten-doped and VO2-modified TiO2 nanobelts were synthesized through the two-step synthesis. The growth parameters such as the structure of raw material, the nature and concentration of alkaline solution, reaction temperature and time are optimized depending on different doping source. In addition, the preparation of tungsten-doped TiO2 nanobelts was conducted with a one-step synthesis process combining ion-exchange with hydrothermal treatment. The influences of different amount of doping source on the growth and phases of tungsten-doped TiO2 were investigated.
    Ultraviolet–visible (UV–Vis) diffuse reflectance spectra of prepared metal-doped TiO2 were recorded. The doped TiO2 nanobelts possess narrower band gaps than the pure TiO2 nanobelt, which can be attributed to the enhanced absorption in the visible light region.
    The gas sensing properties to ethanol were demonstrated in this work. The electrical response towards different gas concentration have been tested at 150 °C. Doping effects on structural and sensing properties were also investigated. The tungsten-doped TiO2 nanobelts was found to possess a higher sensitivity than pure TiO2 thin film. Furthermore, the tungsten-doped TiO2 nanobelts exhibited a short response and recovery time at the relative low working temperature.

    Content Content 1 Acknowledgements 3 Abstract 5 Chapter 1 Introduction 8 1-1 Nanotechnology 8 1-2 Properties of Titanium Dioxide 10 1-3 Synthetic Methods for TiO2 Nanostructures 13 1-3.1 Hydrothermal Method 14 1-3.2 Sol-Gel Method 16 1-4 Doped TiO2 Nanomaterials 17 1-4.1 Metal-Doped TiO2 Nanomaterials 18 1-4.2 Nonmetal-Doped TiO2 Nanomaterials 19 1-5 Photocatalysis 20 1-6 Gas Sensing Mechanisms 21 Chapter 2 Experimental Procedures 24 2-1 Two-step Synthesis of W,V-doped TiO2 24 2-1.1 Synthesis of Titania Nanobelts 24 2-1.2 Doping Process 24 2-2 One-step Synthesis of Tungsten-doped TiO2 25 2-3 Scanning Electron Microscope Observation 26 2-4 Transmission Electron Microscope Observation 27 2-5 X-Ray Diffraction Analysis 28 2-6 UV-Visible Spectroscopy 28 2-7 Gas Sensing Measurement 29 Chapter 3 Results and Discussion 32 3-1 Two-step Synthesis of Tungsten-doped TiO2 32 3-1.1 Pure TiO2 Nanobelts 32 3-1.2 Tungsten-doped TiO2 (W-doped TiO2) 39 3-2 Two-step Synthesis of VO2-modified TiO2 43 3-3 One-step Synthesis of Tungsten-doped TiO2 49 3-4 Proposed Mechanism for the Growth of W-doped TiO2 Nanobelts 58 3-4.1 Two-step Synthesis 58 3-4.2 One-step Synthesis 60 3-5 Proposed Mechanism for the Two-step Growth of VO2-modified TiO2 Nanobelts 61 3-6 UV-Visible Spectroscopy 61 3-7 Gas Sensing Properties 67 Chapter 4 Summary and Conclusions 70 References 72

    References
    1. A transcript of this talk is available online (http://www.zyvex.com/nanotech/feynman.html).
    2. Drexler, K. E., "Engines of Creation: The Coming Era of Nanotechnology," Anchor Books, New York, 1986.
    3. Zhang, Y. X.; Li, G. H.; Jin, Y. X.; Zhang, Y.; Zhang, J.; Zhang, L. D., “Hydrothermal synthesis and photoluminescence of TiO2 nanowires,” Chem. Phys. Lett. 2002, 365, 300-304.
    4. Fujishima, A.; Honda, K., “Electrochemical photolysis of water at a semiconductor electrode,” Nature 1972, 238, 37-38.
    5. Yu, J. C.; Ho, W. K.; Lin, J.; Yip, K. Y.; Wong, P. K., “Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate,” Environmental Science & Technology 2003, 37, 2296-2301.
    6. Wang, Y. M.; Du, G. J.; Liu, H.; Liu, D.; Qin, S. B.; Wang, N.; Hu, C. G.; Tao, X. T.; Jiao, J.; Wang, J. Y.; Wang, Z. L., “Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications,” Adv. Funct. Mater. 2008, 18, 1131-1137.
    7. Cebeci, F. C.; Wu, Z. Z.; Zhai, L.; Cohen, R. E.; Rubner, M. F., “Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings,” Langmuir 2006, 22, 2856-2862.
    8. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., “Light-induced amphiphilic surfaces,” Nature 1997, 388, 431-432.
    9. Gopel, W.; Rocker, G.; Feierabend, R., “Intrinsic defects of TiO2 (110) – interaction with chemisorbed O2, H2, CO, and CO2,” Physical Review B 1983, 28, 3427-3438.
    10. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., “Nanowire dye-sensitized solar cells,” Nature Materials 2005, 4, 455-459.
    11. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Letters 2006, 6, 215-218.
    12. Masao, K.; Ichiro, O., “Photocatalysis: science and technology,” Springer-Verlag GmbH & Co. KG, Heidelburg, Germany, 2002.
    13. DuPont™ TiO2's benefits pages.
    (http://www.specialchem4coatings.com/tc/TiO2/).
    14. Hoyer, P., “Formation of a titanium dioxide nanotube array,” Langmuir 1996, 12, 1411-1413.
    15. Wu, D.; Liu, J.; Zhao, X. N.; Li, A. D.; Chen, Y. F.; Ming, N. B., “Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts, ” Chem. Mater. 2006, 18, 547-553.
    16. Chen, X.; Mao, S. S., “Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications,” Chemical Reviews 2007, 107, 2891-2959.
    17. Pradhan, S. K.; Reucroft, P. J.; Yang, F. Q.; Dozier, A., “Growth of TiO2 nanorods by metalorganic chemical vapor deposition,” J. Crystal Growth 2003, 256, 83-88.
    18. Byrappa, K.; Adschiri, T., “Hydrothermal technology for nanotechnology,” Prog. Crystal Growth and Charact Mater. 2007, 53, 117-166.
    19. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., “Titania nanotubes prepared by chemical processing,” Adv. Mater. 1999, 11, 1307-1311.
    20. Matsuoka, M.; Kitano, M.; Fukumoto, S.; Iyatani, K.; Takeuchi, M.; Anpo, M., “The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO2 thin films,” Catalysis Today 2008, 31, 159-164.
    21. Wesley, V. P.; Arnold I. S., “Nanorods, Nanotubes and Nanomaterials Research Progress,” Nova Publishers, New York, 2008.
    22. Nakaso, K.; Fujimoto, T.; Seto, T.; Shimada, M.; Okuyama, K.; Lunden, M. M., “Size distribution change of titania nano-particle agglomerates generated by gas phase reaction, agglomeration, and sintering,” Aerosol Science and Technology 2001, 35, 929-947.
    23. Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R., “Sol-gel template synthesis of semiconductor nanostructures,” Chem. Mater. 1997, 9, 857-862.
    24. Nguyen, H. T.; Miao, L.; Tanemura, S.; Tanemura, M.; Toh, S.; Kaneko, K.; Kawasaki, M., “Structural and morphological characterization of anatase TiO2 coating on inverted iota-alumina scale fiber fabricated by sol-gel dip-coating method,” J. Crystal Growth 2004, 271, 245-251.
    25. Choi, W. Y.; Termin, A.; Hoffmann, M. R., “The role of metal-ion dopants in quantum-size TiO2 - corelation between photoreactivity and charge - carrier recombination dynamics,” J. Phys. Chem. 1994, 98, 13669-13679.
    26. Gu, D. E.; Yang, B. C.; Hu, Y. D., “A novel method for preparing v-doped titanium dioxide thin film photocatalysts with high photocatalytic activity under visible light irradiation,” Catalysis Letters 2007, 118, 254-259.
    27. Li, J. X.; Xu, J. H.; Dai, W. L.; Li, H. X.; Fan, K. N., “One-pot synthesis of twist-like helix tungsten-nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol,” Applied Catalysis B-Environmental 2008, 82, 233-243.
    28. Couves, J. W.; Thomas, J. M.; Catlow, C. R. A.; Greaves, G. N.; Baker, G.; Dent, A. J., “Insitu studies of the dehydration of zeolitic catalysts by time-resolved evergy-dispersive x-ray absorption-spectroscopy,” J. Phys. Chem. 1990, 94, 6517-6519.
    29. Tian, Z. M.; Yuan, S. L.; Yin, S. Y.; Zhang, S. Q.; Xie, H. Y.; Miao, J. H.; Wang, Y. Q.; He, J. H.; Li, J. Q., “Synthesis and magnetic properties of vanadium doped anatase TiO2 nanoparticles,” J. Magn. Magnetic Mater. 2008, 320, L5-L9.
    30. Gu, D. E.; Yang, B. C.; Hu, Y. D., “V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation,” Catalysis Communications 2008, 9, 1472-1476.
    31. Yang, Y.; Li, X. J.; Chen, J. T.; Wang, L. Y., “Effect of doping mode on the photocatalytic activities of Mo/TiO2,” J. Photochemistry and Photobiology A: Chemistry 2004, 163, 517-522.
    32. Litter, M. I.; Navio, J. A., “Photocatalytic properties of iron-doped titania semiconductors,” J. Photochemistry and Photobiology A: Chemistry 1996, 98, 171-181.
    33. Ohno, T.; Tanigawa, F.; Fujihara, K.; Izumi, S.; Matsumura, M., “Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder,” J. Photochemistry and Photobiology A: Chemistry 1999, 127, 107-110.
    34. Premkumar, J., “Development of super-hydrophilicity on nitrogen-doped TiO2 thin film surface by photoelectrochemical method under visible light,” Chem. Mater. 2004, 16, 3980-3981.
    35. Lin, L.; Lin, W.; Zhu, Y. X.; Zhao, B. Y.; Xie, Y. C., “Phosphor-doped titania - a novel photocatalyst active in visible light,” Chem. Lett. 2005, 34, 284-285.
    36. Irie, H.; Watanabe, Y.; Hashimoto, K., “Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst,” Chem. Lett. 2003, 32, 772-773.
    37. Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K., “Band gap narrowing of titanium dioxide by sulfur doping,” Appl. Phys. Lett. 2002, 81, 454-456.
    38. Chen, D.; Yang, D.; Wang, Q.; Jiang, Z. Y., “Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles,” Industrial & Engineering Chemistry Research 2006, 45, 4110-4116.
    39. Li, D.; Haneda, H.; Labhsetwar, N. K.; Hishita, S.; Ohashi, N., “Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies,” Chem. Phys. Lett. 2005, 401, 579-584.
    40. Hong, X. T.; Wang, Z. P.; Cai, W. M.; Lu, F.; Zhang, J.; Yang, Y. Z.; Ma, N.; Liu, Y. J., “Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide,” Chem. Mater. 2005, 17, 1548-1552.
    41. Luo, H. M.; Takata, T.; Lee, Y. G.; Zhao, J. F.; Domen, K.; Yan, Y. S., “Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine,” Chem. Mater. 2004, 16, 846-849.
    42. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 2001, 293, 269-271.
    43. Fujishima, A.; Zhang, X. T., “Titanium dioxide photocatalysis: present situation and future approaches,” C. R. Chimie 2005, 8, 750-760.
    44. Fujishima A., Hashimoto K., Watanabe T., ”Mechanism of photocatalyst,” Nippon Jitsugry Publishing Co., Tokyo 2000.
    45. Garzella, C.; Bontempi, E.; Depero, L. E.; Vomiero, A.; Della Mea, G.; Sberveglieri, G., “Novel selective ethanol sensors: W/TiO2 thin films by sol-gel spin-coating,” Sensors and Actuators B 2003, 495-502.
    46. Liu, J. F.; Wang, X.; Peng, Q.; Li, Y. D., “Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials,” Adv. Mater. 2005, 17, 764-767.
    47. Randy, D.D.; Jay, H.L., “Environmental instrumentation and analysis handbook,” John Wiley and Sons, 2004.
    48. Morgan, D. L.; Zhu, H. Y.; Frost, R. L.; Waclawik, E. R., “Determination of a morphological phase diagram of titania/titanate nanostructures from alkaline hydrothermal treatment of Degussa P25,” Chem. Mater. 2008, 20, 3800-3802.
    49. Zhang, H. Y.; Ji, T. H.; Liu, Y. F.; Cai, J. W., “Preparation and characterization of room temperature ferromagnetic Co-doped anatase TiO2 nanobelts,” J. Phys. Chem. C 2008, 112, 8604-8608.
    50. Zheng, Y. Q.; Shi, E. R.; Chen, Z. Z.; Li, W. J.; Hu, X. F., “Influence of solution concentration on the hydrothermal preparation of titania crystallites,” J. Mater. Chem. 2001, 11, 1547-1551.
    51. Zhao, Z. W.; Liu, Y.; Cao, H.; Gao, S. J.; Tu, M. J., “Phase evolution during synthesis of vanadium carbide (V8C7) nanopowders by thermal processing of the precursor,” Vacuum 2008, 82, 852-855.
    52. Xu, Z. L.; Shang, J.; Liu, C. M.; Kang, C. L.; Guo, H. C.; Du, Y. G., “The preparation and characterization of TiO2 ultrafine particles,” Mater. Sci. and Engng. B-Solid State Mater. for Adv. Techno. 1999, 63, 211-214.
    53. Wang, Y. Q.; Zhang, Z. J.; Zhu, Y.; Li, Z. C.; Vajtai, R.; Ci, L. J.; Ajayan, P. M., “Nanostructured VO2 photocatalysts for hydrogen production,” Acs Nano 2008, 2, 1492-1496.
    54. Sberveglieri, G.; Comini, E.; Faglia, G.; Atashbar, M. Z.; Wlodarski, W., “Titanium dioxide thin films prepared for alcohol microsensor applications,” Sensors and Actuators B 2000, 66,139-141.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE