簡易檢索 / 詳目顯示

研究生: 劉東杭
Dong-Hang Liu
論文名稱: CMOSMEMS紅外線熱感測器的設計與製造
Design and Fabrication of CMOSMEMS Infrared Thermal Sensors
指導教授: 盧向成
Shiang-Cheng Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 55
中文關鍵詞: CMOS紅外線次臨界熱感測器
外文關鍵詞: CMOS, infrared, sub-threshold, thermal sensor
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是研究CMOSMEMS紅外線熱感測器的製作,製作過程包含了(1)機械結構的設計與模擬,(2)創新的感測方式:利用PMOS電晶體操做在次臨界區的通道電阻,作為感測的機制。(3)後製程實驗的操作,以及電路效能與機電整合的量測。在最出模擬的TCR值為-3.3%與最後量測結果相比,相距甚小,其量測值-3.1%也優於過去文獻中所發表的結果。而懸浮結夠的面積大小,與感測電晶體PMOS的長寬比,在設計當初並沒有考量其最佳化的效果,因此此篇論文也只討論其量測與模擬結果,希望這方面的探討在未來可以詳細的去研究探討。另外,此次的設計中表面吸收紅外線熱輻射的懸浮平板,表面為鋁金屬,雖然可增加熱傳導至感應電晶體的區塊,但是其對紅外線熱輻射的反射率不小,假若有整個晶圓可以利用,在製作時就可以先沉積抗反射膜,增加懸浮平板對紅外線熱輻射的吸收。


    In this thesis we describe the design and fabrication of a CMOS MEMS Infrared thermal sensor fabricated in a 0.35-□m CMOS process. A PMOS transistor operated in the sub-threshold region is used for the thermal sensing purpose. The pixel size is 70 □m by 70 □m, and the sensing transistor is placed in a released membrane of 50 □m by 50 □m fabricated by successive dry etching steps. For device characterization, a poly-silicon heater is placed in each pixel to provide a temperature change at 0.072□C/mW. The MOS output resistance changes from 108 M□ to 90 M□ for a temperature rise of 6□C, averaging a temperature coefficient of resistance at -3.17%/□C. The measured input-referred noise voltage from the pre-amp is 7 □V/□Hz, equivalent to a noise temperature of 1.3 mK/□Hz.

    摘要 I 目錄 III 圖目錄 V 表目錄 VII 第一章 序論 1 1-1 微機電系統概論 1 1-2 紅外線熱感測簡介 3 1-2-1 熱感測 3 1-2-2 紅外線熱輻射 3 1-3 紅外線熱感測器研究動機與文獻回顧 6 1-3-1 紅外線熱感測器研究動機 6 1-3-2 文獻回顧 8 第二章 CMOSMEMS紅外線熱感測器系統架構 15 2-1 紅外線熱感測系統之概述 15 2-2 感測器設計與模擬 17 2-2-1 紅外線熱感測器暫態分析 23 2-3 CMOS感測電路設計與模擬 29 2-3-1 感測原理 29 2-3-2 感測電路模擬 34 2-4 感測器規格與 Tape-out 晶片圖 37 第三章 後製程步驟與感測器量測結果 41 3-1 後製程實驗 41 3-2 感測器結構量測 45 3-3 感測訊號量測結果 47 第四章 結論 52 4-1 改善與討論 52 參考文獻 53

    [1] Lawrence A. Klein, Millimeter-Wave and Infrared Multisensor Design and Signal Processing, Artech House, Inc. 1997.
    [2] P.W. Kruse, “Uncooled infrared focal plane arrays,” 1994.ISAF ’94, Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics, PP. 643-646, 7-10 Aug. 1994.
    [3] Chih-Cheng Hsieh, Chung-Yu Wu, Far-Wen Jih, and Tai-Ping Sun, ”Focal-plane-Arrays and CMOS Readout Techniques of Infrared Imaging System,” IEEE Transactions on circuit and systems for video technology, vol. 7, no 4, pp. 549-605, Auguest 1997.
    [4] L. Goldminz, B. Sabbah, Z.M. Friedman, and Y. Nemirovsky, “Mercury-cadmium-telluride photovoltaic and photoconductive focal-plane array,” Opt. Eng., vol. 32, pp. 952-957, May 1993.
    [5] H. Zogg, A. Fach, J. John, J. Masek, P. Muller, C. Paglino, and W. Butter, “Pb1-xSnxSe on Si LWIR thermal imaging system,” in Infrared Technology XXI, Proc. SPIE, vol. 2552, pp. 404-410, 1995.
    [6] L.J. Kozlowski, J. M. Arias, and W.E. Tennant, “Experimental comparison of staring IR sensor technologies including PV HgCdTe, PV InGaAs,and quantum well GaAs/AlGaAs,” in solid State Crystal: Materials Science and Applications, Proc. SPIE, vol. 2373, pp. 354-360, 1994.
    [7] H. Zogg, A. Fach, C. Maissen, J. Masek, P. Muller, C. Paglino, and S. Blunier, “Photovoltaic lead-chalcogenide on silicon infrared sensor arrays,” Opt. Eng., vol. 33, pp. 1440-1449, May, 1994.
    [8] V. Gopal, “Spatial noise limited NETD performance of a HgCdTe hybrid focal plane array,” Infrared Phys. Technol., vol. 37, pp. 313-320, 1996.
    [9] T.H. Kim, M.S. Han, M.S. Jeoung, J.H. Kwon, N.S. Yim, G.S. Lee, E.T. Kim, S.R. Hahn, H.C. Kwon, Y. Bin, Y.T. Jeoung, and J.M. kim, “Single element photoconductive Hg0.79Cd0.21Te IR detector fabrications and their characteristic,” SPIE, vol. 3436, pp. 91-97, 1998.
    [10] A. Manissadjian, P. Costa, P. Tribolet, and G. Destefanis, “HgCdTe performance for high operating temperatures,” SPIE, vol. 3436, pp. 150-161, 1998
    [11] R.A. Wood, Honeywell Research Memorandum, 1983.
    [12] K.C. Liddiard, Infrared Phys., vol. 24, no. 57, 1984.
    [13] J.S. Shie and P.K. Weng, Sensors and Actuators A, vol. 33, pp. 183-189, 1992.
    [14] A. Takana, S. Matsumoto, N. Tsukamoto, S. Itoh, E. Endoh, A. Nakazato, Y. Kumazawa, M. Hijikawa, H. Gotoh, T. Takana, and N. Teranashi, Proc. Int. Conf. Solid State Sensors and Actuators, 8th, Stockholm, pp. 632-635, 1995.
    [15] L. Brunetti and E. Monticone, Meas. Sci. Technol., vol. 4, no. 11, pp. 1244-1248, 1993.
    [16] M.E. MacDonald and E.N. Grossman, IEEE Trans. Microwave Theory Techn., vol. 43, no. 4, pp. 893-896, 1995.
    [17] W. Lang, P. Steiner, U. Schaber, and A. Richter, Sensors and Actuators A, vol. 43, pp. 185-187, 1994.
    [18] D. Setiadi, H. Weller, and T.D. Binnie, “A pyroelectric polymer infrared sensor array with a charge amplifier readout,” in Eurosensor XII, pp. 1091-1094, 1998.
    [19] C. Hanson, “Uncooled thermal imaging at Texas Instruments,” Proc. of SPIE, Infrared Technology XIX, vol. 2020, 1993.
    [20] T.D. Binnie, H.J. Weller, Z. He, and D. Setiadi, “An integrated 16 □ 16 PVDF pyroelectric sensor array,” IEEE trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 6, November, 2000.
    [21] J. Cooper, Rev. Sci. Instrument, 33, pp. 92-95, 1962.
    [22] Baer, T. Hull, K. Najafi, and K.D. Wise, “A multiplexed silicon infrared thermal imager,” Transducers 91’, pp. 631-634, 1991.
    [23] A. Schaufelbuhl, N. Schneeberger, U. Munch, O. Paul, and H. Baltes, “Uncooled low-cost thermal imager using micromachined CMOS integrated sensor array,” Technical Digest of the IEEE International Conference on Solid-State Sensors and Actuators, Sendai, Japan, 1999.
    [24] R. Amantes, L.A. Goodman, F. Pantuso, D.J. Sauer, M. Varghese, T.S. Villani, and L.K. White,” Progress towards an uncooled IR imager with 5mK NEDT,” SPIE conference on Infrared Technology and Applications, XXIV, vol. 3436, pp. 647-659, San Diego, CA, 1998.
    [25] S.R. Manalis, S.C. Minne, C.F. Quate, G.G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett., vol.70, pp. 3311-3313, 1997.
    [26] P.I. Oden, P.G. Datskos, and T. Thundat, “Uncooled thermal imaging using piezoresistive microcantilever,” Appl. Phys. Lett., vol.69, pp. 3277-3279, 1996.
    [27] H. Lakdawala and G.K. Fedder, “CMOS micromachined infrared imager pixel,” in Technical Digest of the IEEE International Conference on Solid-State Sensors and Actuators, Munich, Germany, pp. 1548-1551, 2001.
    [28] T.W. Kenny, W.J. Kaiser, J.A. Podosek, H.K. Rockstad, and J.K. Reynolds, J. Vac. Sci. Technol. A 11, 797, 1993.
    [29] K. Yamashita, A. Murata and M. Okuyama, “Miniaturized infrared sensor using silicon diaphragm based on Golay cell,” Sensors and Actuators A, vol. 66, 1998, pp. 29-32.
    [30] 李宗昇, “低解析度紅外線影像系統之家庭保全應用,” 國立交通大學光電工程研究所博士論文,民國八十八年。
    [31] 駱緯世, “熱電式紅外線微感測器之設計、分析及製造,” 國立清華大學動力
    機械工程研究所碩士論文, 2004.
    [32] B. C. S. Chou and J. S. Shie, “An innovative Pirani pressure sensor,” Solid State Sensors and Actuators 1997, vol. 2, 16-19 June, 1997, pp. 1465-1468.
    [33] R. J. Reay, E. H. Klaassen, and G. T. A. Kovacs, “Thermally and electrically isolated single silicon structures in CMOS technology,” IEEE Elec. Dev. Lett., vol. 15, no. 10, pp. 399-401, Oct. 1994.
    [34] C.-C. Liu and C. H. Mastrangelo, “A CMOS uncooled heat-balancing infrared imager,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 527-535, Apr. 2000.
    [35] L.-S. Zheng, D.-H. Liu, C.-Y. Hsu, D.-J. Yao, and M. S.-C. Lu, “A CMOS bulk micromachined thermal imager,” submitted to the IEEE Int. Symp. on VLSI Technology, Systems, and Applications (VLSI-TSA-Tech), Hsinchu, Taiwan, 2006.
    [36] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and design of Analog Integrated Circuits, 4th Ed., pp. 47-48, John Wiley and Sons, Inc., 2001.
    [37] K. R. Laker and W. M.-C. Sansen, Design of Analog Integrated Circuits and Systems, Chap. 2, pp. 165, McGraw-Hill, Inc., 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE